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ABSTRACT 
Accurate nonlinear formulations are necessary for the assessment of structures under 
seismic and other extreme loading. In this work, a three-dimensional distributed plasticity 
beam element formulation for circular concrete-filled steel tubes has been developed for 
nonlinear static and dynamic analyses of composite seismic force resisting systems. A 
mixed basis for the formulation was chosen to allow for accurate modeling of both 
material and geometric nonlinearities. The formulation utilizes uniaxial cyclic 
constitutive models for the concrete core and steel tube that account for the salient 
features of each material, as well as the interaction between the two, including concrete 
confinement and local buckling of the steel tube. The accuracy of the formulation was 
verified against a wide variety of analytical and experimental results. The verification 
confirms the capability of the formulation to accurately produce realistic simulations of 
element and frame behavior.  
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Chapter 1 

INTRODUCTION 

1.1 Motivation  
In steel and concrete composite construction, the two materials are integrated in structural 
members to combine the advantages of both materials. Composite beam-columns come in 
several forms (Figure 1-1). The most common are either steel-encased concrete (SRC) 
where a steel shape is encased within a concrete column or concrete-filled steel tubes 
(CFT) were an outer tube is filled with concrete. Concrete-filled tubes are generally 
designated by the shape of steel tube, i.e., rectangular and square (RCFT) or circular 
(CCFT).  

SRC RCFT CCFT
Figure 1-1. Typical Steel and Concrete Composite Sections 

Steel has high strength and ductility; it also facilitates connections with steel girders and 
braces in a steel framing system. Concrete is economical, durable, and fire resistant. For 
CCFT columns in particular, the steel tube confines the concrete core leading to an 
increase in both strength and ductility of the concrete. The concrete core, in turn, restricts 
inward local buckling of the steel tube. Applications of CCFTs within the United States 
include columns in braced frames of high-rise buildings. CCFT columns with diameters 
ranging up to one to three meters and with a D/t ratio of approximately 100 are often used 
(Roeder et al., 1999).  

Composite columns have been shown to have high strength, stiffness, and ductility. 
However, little data is available to justify the structural system response factors (e.g., R, 
Cd, and Ωo) given in the specifications for seismic design of structures utilizing 
composite lateral force resisting frames. Accurate nonlinear static and dynamic 
computational formulations are required for developing rational system response factors. 
The models should directly simulate all predominate inelastic effects from the onset of 
yielding through strength and stiffness degradation causing collapse, while being 
sufficiently robust to track inelastic force redistribution without convergence problems up 
to the point of collapse (FEMA 2008). Such a model would also aid in investigations of 
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beam-column strength and establishing guidelines for the computation of equivalent 
composite beam-column rigidity to be used in seismic analysis and design of composite 
frames. To these ends, an advanced distributed plasticity mixed beam finite element 
formulation has been developed for investigation of composite beam-column and frame 
behavior.  This work presents the development of a new finite element and material 
models for the steel and concrete geared especially for circular concrete-filled steel tube 
beam-columns. Validation is provided versus more than one hundred experiments from 
the literature for a range of geometries and includes both normal and high strength 
materials. 

1.1 Finite Element Formulations 
Structural analyses using nonlinear finite element formulations are performed to quantify 
demand, optimize design, among other purposes. There are a number of different types of 
finite element formulations that could be applied to frame structures using CCFT 
members. Beam elements reduce the three-dimensional behavior to one-dimension, 
utilizing a kinematic assumption (e.g., initially plane sections remain plane) to describe 
the deformations of any point within the member by the deformations of cross sections 
along the length of the member. Three-dimensional continuum analysis allows for 
detailed simulation of CCFT members. In this type of analysis, the concrete core is 
commonly modeled with brick elements, while the steel tube is modeled with shell 
elements (Schneider 1998; Johansson and Gylltoft 2002; Varma et al. 2002; Hu et al. 
2003). The interface between the two materials may be modeled with gap and friction 
elements. Phenomena that are simplified for analysis using beam elements may be 
modeled explicitly. For example, confinement of the concrete core can be modeled 
through the use of three-dimensional constitutive relations and local buckling of the steel 
tube can be modeled thorough geometrical nonlinear behavior. Despite the improved 
accuracy and rationality, the computational expense prevents continuum analysis from 
being a viable option for analysis of complete three-dimensional frames.  

Concentrated plasticity formulations model material nonlinearity only at hinges, usually 
of zero length, at the element ends while assuming the element remains elastic in between 
the hinges (Hajjar and Gourley 1997; El-Tawil and Deierlein 2001; Inai et al. 2004). 
Distributed plasticity formulations allow material nonlinearity throughout the element, 
monitoring inelasticity at specific integration points along the length of the element 
(Hajjar et al. 1998; Aval et al. 2002; Varma et al. 2002; Tort and Hajjar 2007). In 
comparison to concentrated plasticity, distributed plasticity is more accurate and more 
computationally expensive, since inelasticity is traced at multiple points along the length 
of the element rather than just the element ends. While in several cases (e.g., double 
curvature of a beam-column) material nonlinearity is mostly limited to the element ends, 
the distributed plasticity approach is appealing because of its accuracy and generality. 

In both the concentrated and distributed plasticity approaches, initiation and evolution of 
cross sectional behavior needs to be modeled. This may be accomplished in several ways. 
One option models section behavior through multiple surfaces and flow rules defined in 
stress-resultant space (Hajjar and Gourley 1996; El-Tawil and Deierlein 2001). For 
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example, elastic response is maintained if the loading point remains within the loading 
surface. Plastic deformation commences when the loading surface is breached with the 
level of deformation related to the distance between the loading surface and bounding 
surface. A second option, subdivides the two-dimensional cross section into many fibers 
that are each assigned a uniaxial material model (Hajjar et al. 1998; Aval et al. 2002; 
Varma et al. 2002; Tort and Hajjar 2007). A kinematic assumption (e.g., initially plane 
sections remain plane) is used to determine the longitudinal strain at the centroid of each 
fiber. Based on this strain, the stress and modulus of each fiber are computed and 
aggregated to obtain the sectional response. The fiber approach is appealing because of 
the ability to account either explicitly or implicitly for all the salient features of CCFT 
members (e.g., concrete cracking, confinement, local buckling, etc.) through relatively 
simple uniaxial stress-strain models.  

A further classification of beam elements relates to what variables are taken as the 
primary unknowns. This classification distinguishes displacement-based, force-based and 
mixed elements. Mixed, in this case, indicates that both element displacements and stress 
resultants as taken as primary state variables. However, the term could also indicate other 
combinations of primary state variables (Hjelmstad and Taciroglu 2003). Displacement-
based, also termed stiffness-based, elements regard nodal displacements as the primary 
unknowns (Hajjar and Gourley 1997; Aval et al. 2002; Alemdar and White 2005). 
Element deformations are computed using interpolation functions. Element equilibrium is 
satisfied only in a variational sense, i.e., element internal forces computed from the 
assumed displacement field do not strictly satisfy equilibrium. This type of formulation is 
considered easy to implement and to extend to geometric nonlinear behavior.  However, 
the interpolation functions typically used for the deformations only model a linear 
curvature distribution along the length of the element. This is a significant limitation 
especially in the case where plastic hinges develop, causing severely nonlinear curvature 
distributions. Force-based, also termed flexibility-based, elements regard element forces 
as the primary unknowns (de Souza 2000; El-Tawil and Deierlein 2001; Alemdar and 
White 2005). Stress resultants along the length of the element are computed using 
interpolation functions. Element equilibrium is strictly satisfied; however, the 
compatibility of deformations within the element is satisfied only in a variational sense. 
In comparison to displacement-based elements, force-based elements are often more 
computationally expensive and have more elaborate state determination procedures. 
Mixed elements regard both element forces and nodal displacements as primary 
unknowns, allowing interpolation functions for both element deformations and stress 
resultants along the length of the element (Nukala and White 2004a; Alemdar and White 
2005; Tort and Hajjar 2007). Despite the complexity of the state determination procedure, 
which is typically greater than for displacement- or force-based elements, the mixed 
method provides a favorable balance of accurate assessment of nonlinear curvatures 
along the length of the element and capability to include geometric nonlinearity directly.  
In this work, a mixed distributed plasticity fiber-based beam element formulation for 
CCFT beam-columns is implemented within OpenSees. 

OpenSees is an object-oriented software framework for the analysis of structural systems 
(OpenSees 2009). Software patterns, implemented within the framework, represent the 
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fundamental relationships necessary for nonlinear finite element analysis. The main 
abstractions include: ModelBuilder, which constructs objects and adds them to the 
domain; Domain, which is the aggregation of all nodes, elements, loads and constraints 
and contains the state of the structure; Recorder, which monitors and outputs defined 
parameters in the model; and Analysis, which moves the model from one state to another. 
These abstractions interact with specific elements through the common interface of the of 
the abstract Element class, in most cases eliminating the need for special nodes, 
constraints, solution algorithms, etc., for any particular element. The flexible, reusable, 
and extensible nature of the framework allows a minimum amount of new code that 
needs to be written for a new element or material to be implemented. 

A beam implementation is simply the state determination procedure within the natural 
coordinate system (Scott et al. 2008). Separate objects exist to define the geometric 
transformations and cross section constitutive relations otherwise necessary. In typical 
cases the existing implementations of these objects are sufficient. Similarly, a uniaxial 
material implementation is simply the state determination procedure for the given a 
strain.  

A number of elements already exist within the OpenSees framework ranging from brick 
and quadrilateral elements for continuum analysis, to truss and zero-length elements. 
Beam elements include: two- and three-dimensional elastic elements, concentrated 
plasticity elements, displacement-based distributed plasticity elements, and force-based 
distributed plasticity elements (OpenSees 2009). A wide variety of uniaxial materials 
used in fiber sections to define sectional response also already exist. Materials include: 
elastic, elastically perfectly plastic, hardening, and several models specifically for 
concrete and steel, among others.  

The finite element formulation presented in this work is a mixed fiber-based distributed 
plasticity beam element. It is derived in the corotational frame (described in Section 
2.2.1) and implemented within OpenSees utilizing existing software patterns to allow for 
general analyses of CCFT members and frames.  

1.2 Uniaxial Constitutive Models for CCFT Members 
Accurate constitutive models are necessary for the analysis of structural members. 
Analyses that use a fiber discretization to define section behavior rely on uniaxial 
material models that govern the behavior of the subdivisions of the cross sections. The 
need for uniaxial constitutive models for specifically CCFT members arises from the 
multi-dimensional nature of the composite interaction. Even in uniaxial loading, the 
concrete core is under a three-dimensional state of stress while the steel tube is under 
two-dimensional state of stress. While this not unique to CCFT members, the extent to 
which these multi-dimensional aspects effect the uniaxial (along the longitudinal axis of 
the member) behavior is. Several researchers have proposed different constitutive models 
for CCFT members (Shams and Saadeghvaziri 1999; Susantha et al. 2001; Elremaily and 
Azizinamini 2002; Sakino et al. 2004; Hatzigeorgiou 2008).  Each of these models uses 
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different assumptions and methods of calibration, but they generally strive to mimic the 
response of concentrically loaded short CCFT columns.  

For clarity and consistency in notation, a few expressions common to the constitutive 
relations will be presented here. It is typical to utilize the idealized stress distribution 
shown in the free body diagram in Figure 1-2 to derive a relation between the hoop stress 
in the steel tube and the confining pressure in the concrete core. Such a relation is 
presented in Equations 1.1 and 1.2 , where fl is the confining pressure in the concrete 
core, D is the outside diameter of the steel tube, t is the thickness of the steel tube, and αθ 
Fy is the hoop stress in the steel tube expressed as the product of the ratio of hoop stress 
to steel yield stress and steel yield stress. 

fl
σθ = αθ Fy

D

 
 

Figure 1-2. Idealized Free Body Diagram of a CCFT Section 

 2 ( 2 ) 0y lF t F D t fθα∑ = − − =  [1.1] 

 2
2l yf F

D tθα=
−

 [1.2] 

The von Mises yield criterion is also commonly employed. For the biaxial state of stress 
assumed to exist in the steel tubes of CCFT members, the yield criteria is written as in 
Equation 1.3, where αθ is the ratio of hoop stress to steel yield stress and αz is the ratio of 
axial stress to steel yield stress. 

 2 2 1z zθ θα α α α− + =  [1.3] 

For the case of a given hoop stress ratio, yield occurs at different axial stress ratios in the 
positive and negative direction. These can be computed as Equation 1.4 for positive stress 
and Equation 1.5 for negative stress.  
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 ( )2
,criticalpositive 0.5 4 3z θ θα α α= + −  [1.4] 

 ( )2
,criticalnegative 0.5 4 3z θ θα α α= − −  [1.5] 

The concrete core experiences a strength increase due to the confinement pressure acting 
on it. Numerous relations have been proposed to estimate the increase in strength. Two of 
the most common are those proposed by Richart et al. (1929) (Equation 1.6) and Mander 
et al. (1988) (Equation 1.7). 

 4.1cc c lf f f′ ′= +  [1.6] 

 7.941.254 2.254 1 2l l
cc c

c c

f ff f
f f

⎛ ⎞
′ ′= − + + −⎜ ⎟⎜ ⎟′ ′⎝ ⎠

 [1.7] 

Sakino et al. (2004) presents constitutive relations for CCFT members calibrated to a 
series of tests of on short concentrically loaded columns. Based on a regression analysis 
using the experimental strength of the columns, an estimation of the steel hoop stress is 
made as 19% of the yield stress of the steel (i.e., αθ = 0.19). The hoop stress is related to 
the confinement pressure in the concrete core using Equation 1.2, which is in turn related 
to the confined concrete strength using Equation 1.6. A nonlinear function is used to 
describe the stress-strain relation of the concrete core. An elastic-perfectly plastic model, 
with the positive and negative yield stresses adjusted in accordance with the von Mises 
yield criterion to account for the hoop stress (Equations 1.4 and 1.5), is used to describe 
the stress-strain relation of the steel tube. 

Elremaily and Azizinamini (2002) present similar constitutive relations to Sakino (2004). 
Using a different set of calibration set (although there was overlap) and different model 
for the confined concrete strength (Equation 1.7), the hoop stress was estimated as 10% 
of the yield stress of the steel (i.e., αθ = 0.10). A nonlinear function was used for the 
stress-strain relation of the concrete and an adjusted elastic-perfectly plastic relation was 
used for the steel tube.  

Hatzigeorgiou (2008) similarly bases the confined concrete strength on the hoop stress in 
the steel tube. However, rather than a constant ratio value for all CCFT members, the 
ratio of hoop stress to yield stress is assumed to follow a function of the yield stress and 
the D/t ratio (Equation 1.8).  

 ( ) ( )exp ln ln 11 1.0yD t Fθα ⎡ ⎤= + − ≤⎣ ⎦  [1.8] 

The stress-strain relationship is made up of three branches: the pre-peak branch described 
by a cubic function, a post-peak linear descending branch, and a constant residual 
strength branch. A hardening model is used for the steel tube, where again, the positive 
and negative yield stresses are adjusted for the presence of hoop stress.  
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Susantha et al. (2001) also uses the steel hoop stress as a main parameter in the 
computation of the confined concrete strength. The ratio of hoop stress to yield stress is 
posed as a difference between the Poisson’s ratio the steel tube and that of the concrete 
core, empirical relations are given for these values which are based on the ratio of 
concrete strength to steel yield stress and the D/t ratio (Equations 1.9 through 1.11). 

 ( 0.5)eθα ν= −  [1.9] 

 20.2312 0.3582 0.1524( / ) 4.843 ( / ) 9.169( / )e e c y e c y c yf F f F f Fν ν ν′ ′ ′ ′ ′= + − + −  [1.10] 

 
6 3 4 2 20.881 10 ( / ) 2.58 10 ( / ) 1.953 10 ( / ) 0.4011e D t D t D tν − − −′ = × − × + × +  [1.11] 

A three branch model is used for the stress-strain relation of the concrete core with a 
nonlinear pre-peak branch, linear descending branch, and constant residual branch. A 
model for the steel tube was not presented. 

The models posed by Shams and Saadeghvaziri (1999) differ from the others in that they 
were calibrated to the results of finite element analyses rather than experimental tests. 
The confined concrete strength is determined using a function of the concrete strength 
and the D/t ratio. A nonlinear equation is used for the stress-strain relation of the steel 
tube. Two parameters were defined to adjust the compressive strength of the steel tube. 
The first accounts for the biaxial effect of the hoop stress and is a function of the D/t 
ratio. The second accounts for the length of the column and is a function of the L/D ratio.  

The similarities between these models identify the main material and geometric 
parameters that govern the behavior of CCFT members: the concrete compressive 
strength, the steel yield strength, and D/t ratio. In each of the models, these three 
parameters primarily dictate the response of the materials. This prior work also shows 
that the confinement of the concrete core provided by hoop stress in the steel tube is a 
dominate phenomenon is the response of CCFT members. However, additional 
behavioral features also affect the response of CCFT members and were largely ignored 
in these models, including local buckling of the steel tube, hardening of the steel tube, 
and tensile capacity of the concrete core (Gourley et al. 2008). The constitutive relations 
presented in this work follow the same trends as in the prior work while modeling a more 
comprehensive range of behavior.  

1.3 Outline and Scope of Report  
Chapter 2 presents the development of a three-dimensional distributed plasticity beam 
element formulation for circular concrete-filled steel tubes. Chapter 3 and Chapter 4 
present the development uniaxial cyclic constitutive models for the concrete core and 
steel tube respectively. These models account for the salient features of each material, as 
well as the interaction between the two, including concrete confinement and local 
buckling of the steel tube. Chapter 5 contains a comprehensive verification study to 
assess the accuracy of the formulation. Comparisons between analytical or experimental 
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results and computational results confirm the capability of the formulation to accurately 
produce realistic simulations of element and frame behavior. Conclusions are drawn and 
future research recommendations are made in Chapter 6. 
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Chapter 2 

THREE-DIMENSIONAL MIXED BEAM 
FINITE ELEMENT 

2.1 Introduction  
For steel and concrete composite members, material nonlinearity and inelasticity arises 
from both constituent materials. Changes in the geometry of the structure under loading 
induce geometric nonlinearities that also need to be modeled. The mixed formulation 
allows for accurate modeling of both geometric and material nonlinearities. Further, 
frame analyses using distributed-plasticity beam-column elements strike a favorable 
balance of computational efficiency and accuracy.  

Figure 2-1. Distributed Plasticity Finite Element Formulation Showing Integration Points 
and Material Fibers 

Distributed plasticity mixed beam finite element formulations have been developed 
previously (Nukala and White 2004a; Alemdar and White 2005; Tort and Hajjar 2007). 
The formulation by Nukala and White (2004a) was intended for the analysis of steel 
structures and included section warping. The formulation by Tort and Hajjar (2007) was 
intended for the analysis of rectangular CFT members and included slip between the steel 
tube and concrete core. The formulation presented here is in many ways similar to these 
models, particularly with respect to the general form of the governing equations.  
However, each of these models has slightly different state determination algorithms, a 
possibility arising from the multiple fields introduced in the formulation (Alemdar and 
White 2005). The previous formulations, nonetheless, serve as a guide to the current 
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formulation and provide indication of the extensibility of the formulation procedure to 
model other phenomena. In the following sections, a finite element formulation for 
analysis of CCFT members is derived. 

2.2 Finite Element Formulation 
2.2.1 Corotational Frame 

The deformation of an element can be separated into two components, rigid body modes 
and deformational modes. There are several advantages to representing the element 
deformations in this way. First, the element displacements can be described with fewer 
degrees-of-freedom (DOF).  This allows for a simplification in computation of the 
element stiffness matrix and internal forces. Second, since the deformational modes are 
relatively small, simplifications can be made in determining strains.  

The frame in which the rigid body modes have been removed is referred to as the 
corotational or natural frame. For a three-dimensional beam without the effects of torsion, 
there exist five natural DOFs. Two rotational deformations at each end and an axial 
elongation at a single end (Figure 2-2) are sufficient to represent the element deformation 
completely. The deformations in the natural frame are expressed with respect to the initial 
undeformed configuration. In this sense, the model is a Total-Lagrangian formulation. 
This is in contrast to an Updated-Lagrangian formulation in which the deformations are 
expressed with respect to the last converged state.  

Figure 2-2. Degrees-of-Freedom and Forces in the Corotational Frame 

2.2.2 Governing Differential Equation 

The governing differential equation is obtained by examining equilibrium of a beam-
column of infinitesimal length (Figure 2-3). A linear torsional response is assumed. For 
that reason, torsional moments are decoupled and excluded from the equilibrium 

,yi yiM θ

,yj yjM θ

,zi ziM θ

,zj zjM θ

,P e
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equations and will be incorporated into the formulation later. The beam is loaded only 
through end forces. The consequence of this simplification is that during analyses, loads 
may only be applied at nodes. Through equilibrium the following relations (Equations 2.1 
through 2.4) are derived. 

 
(a) x-y plane 

 
(b) x-z plane 

Figure 2-3. Internal Forces of an Infinitesimal Element 

 0z
y

dMdvP V
dx dx

− + =  [2.1] 

 0y
z

dMdwP V
dx dx

− + =  [2.2] 

 0 0y z
dV dV
dx dx

= =  [2.3] 

 0dP
dx

=  [2.4] 

Differentiating Equations 2.1 and 2.2 with respect to x and noting the relations of 
Equations 2.3 and 2.4 results in the governing differential equations.  

 
22

2 2 0zd Md vP
dx dx

− + =  [2.5] 
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2 2 0yd Md wP
dx dx

− + =  [2.6] 

To obtain the weak form of the governing differential equations, Equations 2.4, 2.5, and 
2.6 are multiplied by appropriate weighting functions and integrated over the length of 
the element (Equation 2.7). Note that in keeping with the Total-Lagrangian approach, the 
integral is performed over the initial length of the element. 
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Equation 2.8 is obtained by applying integration by parts to Equation 2.7.  

 

[ ]
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∫

 [2.8] 

where the notation “,x” and “,xx” following a variable indicates the first and second 
derivative of that variable with respect to x respectively. This notation will be used 
throughout the rest of this discussion. Collecting terms, Equation 2.8 is simplified to 

 
( )
( )

, , , , , , ,0

, , , , , , 0
0

o

o

L

x x x x x xx z xx y

L

x x z x x z y x x y

u v v w w P v M w M dx

u v v w w P vM v M wM w M

δ δ δ δ δ

δ δ δ δ δ δ δ

+ + + +

⎡ ⎤− + + − + − + =⎣ ⎦

∫
 [2.9] 

Noting that the virtual displacements (δu, δv, and δw) satisfy the essential boundary 
conditions, specifically that they are zero where the displacements are zero in the natural 
frame, Equation 2.9 can be further simplified to  

 , , , , , , ,0
0oL T

x x x x x xx xxu v v w w v w dxδ δ δ δ δ δ⎡ ⎤+ + − =⎣ ⎦∫ extD q Q  [2.10] 

where D is vector of section forces given later in Equation 2.16b; q is a vector of natural 
displacements given later in Equation 2.12c; and Qext is a vector of applied element end 
forces given by Equation 2.11. 

 
T

zi yi zj yjP M M M M⎡ ⎤= ⎣ ⎦extQ  [2.11] 

2.2.3 Finite Element Discretization 

In this mixed formulation, both element displacements and forces are taken as primary 
state variables. Interpolation functions are thus necessary for both fields. A linear 
interpolation function was chosen for the axial deformations and cubic interpolation 
functions were chosen for the transverse deformations (Equation 2.12).  

 = uu N q  [2.12a] 

 [ ]Tu v w=u  [2.12b] 

 
T

zi yi zj yje θ θ θ θ⎡ ⎤= ⎣ ⎦q  [2.12c] 



 

13 

 2 3 2 3

2 2

2 3 2 3

2 2

2

2

0 0 0 0
0 0 0

0 0 0

x
L

x x x x
L LL L

x x x x
L LL L

x

x

⎡ ⎤
⎢ ⎥

= − + − +⎢ ⎥
⎢ ⎥− + − +⎢ ⎥⎣ ⎦

uN  [2.12d] 

For compactness of notation, the following equations will be defined. 

 ( ) 2 3

2
2x x

L L
A x x= − +  [2.13] 

 ( ) 2 3

2
x x
L L

B x = − +  [2.14] 

The first variation of the element deformation can be shown to utilize the same 
interpolation functions (Equation 2.15). 

 δ δ= uu N q  [2.15] 

The stress resultants can be described by an axial force (P) and two bending moments 
(Mz,My) about two orthogonal axes. A constant interpolation function was chosen for the 
axial force and linear interpolation functions with additional P-δ terms were chosen for 
the bending moments. 

 D1D = N Q  [2.16a] 

 
T

z yP M M⎡ ⎤= ⎣ ⎦D  [2.16b] 

 
T

zi yi zj yjP M M M M⎡ ⎤= ⎣ ⎦Q  [2.16c] 

 1

1 0 0 0 0
( ) 1 0 0
( ) 0 1 0

x x
D L L

x x
L L

v x
w x

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

N  [2.16d] 

The first variation of the section forces may be expressed as 

 δ δ δ+D1 D1D = N Q N Q  [2.17] 

or, through a rearrangement of terms 

 δ δ δ+D2 D1D = N q N Q  [2.18] 

where 
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0 0 0 0 0
0 0 0
0 0 0

PA PB
PA PB

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

D2N  [2.19] 

2.2.4 Kinematic Equations 

The cross-sectional deformations of a three-dimensional beam element without torsional 
effect can be represented by an axial strain (ε) and two curvatures (κz,κy) about two 
orthogonal axes.  

 ˆ T

z yε κ κ⎡ ⎤= ⎣ ⎦d  [2.20] 

The axial component of Green-Lagrange strain is defined by Equation 2.21 

 ( ) ( )2 2
, , ,1 2 1 2x x xu v wε = + +  [2.21] 

It is important to note that the description of the Green-Lagrange strain in Equation 2.21 
is not complete. The term ½(u,x)2 was omitted since the axial deformation of the element 
chord is assumed to be small (Alemdar and White 2005). Curvatures are defined as 

 , ,z xx y xxv wκ κ= =  [2.22] 

Utilizing the interpolation functions of the finite element discretization (Equation 2.12) 
the strains can be written as 

 ( ) ( )2 2

, , , ,
1 1
2 2x yi x yj x zi x zj

e A B A B
L

ε θ θ θ θ= + + + +  [2.23] 

 , ,z xx zi xx zjA Bκ θ θ= +  [2.24] 

 , ,y xx yi xx yjA Bκ θ θ= +  [2.25] 

The first variation of the cross section strains may be written as 

 , , , , ,x x x x xu v v w wδε δ δ δ= + +  [2.26] 

 , ,z xx y xxv wδκ δ δκ δ= =  [2.27] 

Utilizing the interpolation functions of the finite element discretization (Equation 2.12) 
the first variation of the strains can be written as 
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( )( )

( )( )
, , , ,

, , , ,

x yi x yj x yi x yj

x zi x zj x zi x zj

e A B A B
L
A B A B

δδε θ θ δθ δθ

θ θ δθ δθ

= + + +

+ + +
 [2.28] 

 , ,z xx zi xx zjA Bδκ δθ δθ= +  [2.29] 

 , ,y xx yi xx yjA Bδκ δθ δθ= +  [2.30] 

These equations are written in matrix form as 

 ˆ
ˆδ δ= δdd N q  [2.31] 

 

2 2 2 2
, , , , , , , , , , , ,

ˆ , ,

, ,

1
0 0 0
0 0 0

x zi x x zj x yi x x yj x x zi x zj x x yi x yj

xx xx

xx xx

L A A B A A B A B B A B B
A B

A B

θ θ θ θ θ θ θ θ⎡ ⎤+ + + +
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

δdN   

[2.32] 

2.2.5 Compatibility Equation 

The mixed finite element formulation requires satisfaction of equilibrium and 
compatibility equations simultaneously based on the selected variation principle. Element 
strains are obtained along the length of the element from displacements ( d̂ ). They are 
also obtained from forces (d). The compatibility equation (Equation 2.33) ensures that the 
cross section strains obtained from element displacement are equal to those obtained from 
element forces in a variational sense.  

 ( )0
ˆ 0oL T dxδ − =∫ D d d  [2.33] 

2.2.6 The Hellinger-Reissner Principle 

The Hellinger-Reissner principle is stated by combining the weak form of the equilibrium 
equation (Equation 2.10) and the compatibility equation (Equation 2.33).   

 ( )0 0
ˆ ˆ 0o oL LT T Tdx dxδ δ δ− + − =∫ ∫extd D q Q D d d  [2.34] 

Equation 2.35 is obtained by substituting Equations 2.18 and 2.31 into 2.34 and 
collecting terms.  

 ( )( ) ( )( )ˆ0 0 0
ˆ ˆ 0o o oL L LT T T T Tdx dx dxδ δ− + − + − =∫ ∫ ∫ext D2 D1δdq N D Q N d d Q N d d  [2.35] 

Since δqT and δQT are arbitrary, two equations are obtained. 
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 ( )ˆ0 0
ˆ 0o oL LT Tdx dx= − + − =∫ ∫ext D2δdg N D Q N d d  [2.36] 

 ( )0
ˆ 0oL T dx= − =∫ D1V N d d  [2.37] 

2.2.7 Section Equilibrium Equation 

A third equation is obtained noting section equilibrium. One set of section forces is 
obtained through interpolation of the element forces (Equation 2.16). Another set of 
section forces, DΣ, is obtained through integration of the individual fiber stresses. These 
two sets of forces are maintained equal to each other through Equation 2.38. 

 −ΣU = D D  [2.38] 

2.2.8 Consistent Linearization of the Element Compatibility Equation 

Linearized versions of the governing equations are necessary in the element state 
determination and stiffness formulation process. First, the element compatibility equation 
will be linearized about the solution variables. A Taylor series expansion is used to 
perform the linearization. 

 1

, 0 , 0

( , ) ( , )i i d d
d dα γ α γ

α γ α γ
α γ

+

= =

≈ + + + + + +V V V q Δq Q ΔQ V q Δq Q ΔQ  [2.39] 

This can be expanded such that the terms can be evaluated individually. 

 

( ) ( )

( ) ( )

( ) ( )

1

0 0
, 0 , 0

0 0
, 0 , 0

0 0
, 0 , 0

ˆ ˆ

ˆ

ˆ

o o

o o

o o

L Li i T T

L LT T

L LT T

d ddx dx
d d

d ddx dx
d d

d ddx dx
d d

α γ α γ

α γ α γ

α γ α γ

α α

α γ

γ γ

+

= =

= =

= =

⎛ ⎞ ⎛ ⎞
≈ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞

− + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

+ −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫

∫ ∫

∫ ∫

D1 D1

D1 D1

D1 D1

V V N d d N d

N d N d d

N d N d

 [2.40] 

The second term of the right hand side of Equation 2.40 is evaluated as 
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( )

( )

0
, 0

0

0

ˆ

0 0 0 0 0
ˆ0 0 0 0

0 0 0 0

ˆ ˆ ˆ ˆ0 ( )[2] ( )[3] ( )[2] ( )[3]
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

o

o

o

L T

T

L

zi zj

yi yj

L

d dx
d

A B dx
A B

A A B B

dx

α γα

θ θ
θ θ

=

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

⎡ ⎤
⎢ ⎥= Δ + Δ −⎢ ⎥
⎢ ⎥Δ + Δ⎣ ⎦
⎡ ⎤− − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

=

∫

∫

∫

D1

d

N d d

d d

d d d d d d d d

Δq

M Δq

 [2.41] 

The third term of the right hand side of Equation 2.40 is evaluated as 

 
( ) ( )( )ˆ0 0

, 0

ˆ0

ˆo o

o

L LT T

L T

d dx dx
d

dx

α γα =

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠

= =

∫ ∫

∫

D1 D1 δd

D1 1δd

N d N N Δq

N N Δq G Δq

 [2.42] 

The fourth term of the right hand side of Equation 2.40 is evaluated as 

 

( )

( )

( )

( )

0
, 0

0
, 0

0

0

0

0 0 0 0 0
0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0
0 0 0

o

o

o

o

o

L T

L T

L T
zi zj

yi yj

L T

L T

d dx
d

d dx
d

A B dx
A B

PA PB dx
PA PB

dx

α γ

α γ

α

α

θ θ
θ θ

=

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎛ ⎞∂∂
= ⎜ ⎟⎜ ⎟∂ ∂ ⎝ ⎠

⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥= Δ + Δ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥Δ + Δ⎣ ⎦⎝ ⎠

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

= =

∫

∫

∫

∫

∫

D1

Σ
D1

Σ

D1

D1

D1 D2 12

N d

DdN D
D D

N f I Q

N f Δq

N f N Δq H Δq

 [2.43] 

The fifth and sixth terms of the right hand side of Equation 2.40 is evaluated as 
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 ( )0
, 0

ˆ 0oL Td dx
d α γγ =

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ D1N d d  [2.44] 

 ( )
0

, 0

ˆ 0oL T d dx
d α γγ =

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∫ D1N d  [2.45] 

The seventh term of the right hand side of Equation 2.40 is evaluated as 

 
( ) ( )

( )

0 0
, 0 , 0

0 0

o o

o o

L LT T

L LT T

d ddx dx
d d

dx dx

α γ α γγ γ= =

⎛ ⎞ ⎛ ⎞∂∂
=⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

= = =

∫ ∫

∫ ∫

Σ
D1 D1

Σ

D1 D1 D1 D1 11

DdN d N D
D D

N f I N ΔQ N f N ΔQ H ΔQ

 [2.46] 

where f is the flexibility of the section.  

Combining the results of Equations 2.41 through 2.46 back into Equation 2.40 yields 

 
( )

1i i

i

+ ≈ + + − −

≈ + + − −
d 1 12 11

d 1 12 11

V V M Δq G Δq H Δq H ΔQ

V M G H Δq H ΔQ
 [2.47] 

The final linearized form of the element compatibility equation (Equation 2.47) will be 
used in the state determination and stiffness formulation procedure as described in 
Section 2.2.12. 

2.2.9 Consistent Linearization of the Element Equilibrium Equation 

Linearization of the element equilibrium equation follows a similar process. 

 

1

, , 0

, , 0

, , 0

( , , )

( , , )

( , , )

i i d
d

d
d

d
d

α γ β

α γ β

α γ β

α γ β
α

α γ β
γ

α γ β
β

+

=

=

=

≈ + + + +

+ + + +

+ + + +

ext ext

ext ext

ext ext

g g g q Δq Q ΔQ Q ΔQ

g q Δq Q ΔQ Q ΔQ

g q Δq Q ΔQ Q ΔQ

 [2.48] 

The second term of the right hand side of Equation 2.48 can be expanded such that the 
terms can be evaluated individually. 
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( )

, , 0

ˆ ˆ0 0
, , 0 , , 0

0
, , 0 , , 0

0
, , 0

( , , )

ˆ

ˆ

o o

o

o

L LT T

L T

L T T

d
d

d ddx dx
d d

d d dx
d d

d ddx
d d

α γ β

α γ β α γ β

α γ β α γ β

α γ β

α γ β
α

α α

β
α α

α α

=

= =

= =

=

+ + +

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

− + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫

∫

∫

ext ext

δd δd

ext ext D2

D2 D2

g q Δq Q ΔQ Q ΔQ

N D N D

Q ΔQ N d d

N d N
0

, , 0

oL
dx

α γ β =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ d

 [2.49] 

The first term of the right hand side of Equation 2.49 is evaluated as 

 

ˆ0
, , 0

2
, , ,
2
, , ,0

2
, , ,

2
, , ,

2
, , ,

2
, , ,

2
, , ,

2
, , ,

0

0 0 0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

o

o

L T

x zi x x zj
L

x yi x x yj

x x zi x zj

x x yi x yj

x x x

x x x

x x x

x x x

d dx
d

A A B
A A BP dx
A B B
A B B

A A B
A A BP

A B B
A B B

α γ βα

θ θ
θ θ

θ θ
θ θ

=

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

⎡ ⎤
⎢ ⎥Δ + Δ⎢ ⎥
⎢ ⎥Δ + Δ=
⎢ ⎥Δ + Δ⎢ ⎥
⎢ ⎥Δ + Δ⎣ ⎦
⎡ ⎤
⎢
⎢
⎢=
⎢
⎢
⎢⎣ ⎦

∫

∫

δdN D

0

oL
dx

⎥
⎥
⎥
⎥
⎥
⎥

=

∫

g

Δq

K Δq

 [2.50] 

The second term of the right hand side of Equation 2.49 is evaluated as 

 ˆ ˆ0 0
, , 0

o oL LT Td dx dx
d α γ βα =

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ D2 2δd δdN D N N Δq G Δq  [2.51] 

The third term of the right hand side of Equation 2.49 is evaluated as 

 
, , 0

0d
d α γ β

β
α =

+ =ext extQ ΔQ  [2.52] 

The fourth term of the right hand side of Equation 2.49 is evaluated as 
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 ( )0
, , 0

ˆ 0oL Td dx
d α γ βα =

⎛ ⎞
− =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ D2N d d  [2.53] 

The fifth term of the right hand side of Equation 2.49 is evaluated as 

 ˆ0 0
, , 0

ˆo oL LT Td dx dx
d α γ βα =

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ T

D2 D2 2δdN d N N Δq G Δq  [2.54] 

The sixth term of the right hand side of Equation 2.49 is evaluated as 

 
0 0

, , 0

o oL LT Td dx dx
d α γ βα =

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫D2 D2 2 22N d N f N Δq H Δq  [2.55] 

The third term of the right hand side of Equation 2.48 can be expanded such that the 
terms can be evaluated individually. 

 

( )

, , 0

ˆ ˆ0 0
, , 0 , , 0

0
, , 0 , , 0

0
, , 0

( , , )

ˆ

ˆ

o o

o

o

L LT T

L T

L T T

d
d

d ddx dx
d d

d d dx
d d

d ddx
d d

α γ β

α γ β α γ β

α γ β α γ β

α γ β

α γ β
γ

γ γ

β
γ γ

γ γ

=

= =

= =

=

+ + +

⎛ ⎞ ⎛ ⎞
= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞

− + + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠

∫ ∫

∫

∫

ext ext

δd δd

ext ext D2

D2 D2

g q Δq Q ΔQ Q ΔQ

N D N D

Q ΔQ N d d

N d N
0

, , 0

oL
dx

α γ β =

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

∫ d

 [2.56] 

The first term of the right hand side of Equation 2.56 is evaluated as 

 ˆ0
, , 0

0oL Td dx
d α γ βγ =

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∫ δdN D  [2.57] 

The second term of the right hand side of Equation 2.56 is evaluated as 

 ˆ ˆ0 0
, , 0

o oL LT Td dx dx
d α γ βγ =

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ T

D1 1δd δdN D N N ΔQ G ΔQ  [2.58] 

The third term of the right hand side of Equation 2.56 is evaluated as 
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, , 0

0d
d α γ β

β
γ =

+ =ext extQ ΔQ  [2.59] 

The fourth term of the right hand side of Equation 2.56 is evaluated as 

 

( )

( )

0
, , 0

0

0

ˆ

0 0 0
0 0

ˆ0 0
0 0
0 0

0 0 0 0 0
ˆ( )[2] 0 0 0 0
ˆ( )[3] 0 0 0 0
ˆ( )[2] 0 0 0 0
ˆ( )[3] 0 0 0 0

o

o

o

L T

L

L

T

d dx
d

A P
dxA P

B P
B P

A P

dxA P

B P

B P

α γ βγ =

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
⎡ ⎤
⎢ ⎥Δ⎢ ⎥
⎢ ⎥= −Δ
⎢ ⎥Δ⎢ ⎥
⎢ ⎥Δ⎣ ⎦
⎡ ⎤
⎢ ⎥

Δ −⎢ ⎥
⎢ ⎥= Δ −⎢ ⎥
⎢ ⎥Δ −
⎢ ⎥
⎢ ⎥Δ −⎣ ⎦

=

∫

∫

∫

D2

d

N d d

d d

d d

ΔQd d

d d

d d

M ΔQ

 [2.60] 

The fifth term of the right hand side of Equation 2.56 is evaluated as 

 
0

, , 0

ˆ 0oL T d dx
d α γ βγ =

⎛ ⎞
=⎜ ⎟⎜ ⎟

⎝ ⎠
∫ D2N d  [2.61] 

The sixth term of the right hand side of Equation 2.56 is evaluated as 

 
0 0

, , 0

o oL LT T Td dx dx
d α γ βγ =

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫D2 D2 D1 12N d N f N ΔQ H ΔQ  [2.62] 

The fourth term of the right hand side of Equation 2.48 is evaluated as 

 
, , 0

( , , )d
d α γ β

α γ β
β =

+ + + = −ext ext extg q Δq Q ΔQ Q ΔQ ΔQ  [2.63] 

Combining the results of Equations 2.49 through 2.63 back in to Equation 2.48 yields 

 ( ) ( )1 Ti i T+ ≈ + + + − + + − −g 2 2 22 1 d 12 extg g K G G H Δq G M H ΔQ ΔQ  [2.64] 
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The final linearized form of the element equilibrium equation (Equation 2.64) will be 
used in the state determination and stiffness formulation procedure as described in 
Section 2.2.12. 

2.2.10 Consistent Linearization of the Section Equilibrium Equation 

Linearization of the section equilibrium equation follows a similar process. By expanding 
the section equilibrium equation about d, holding D constant 

 ( )1

0

i i d
d α

α
α

+

=

≈ + +U U U d Δd  [2.65] 

The second term on the right hand side of Equation 2.65 is evaluated as 

 ( ) ( )
0 0

d d
d dα α

α α
α α= =

+ = + =ΣU d Δd D d Δd kΔd  [2.66] 

Substituting into the result of Equation 2.66 back into Equation 2.65 yields 

 1i i+ ≈ +U U kΔd  [2.67] 

The final linearized form of the section equilibrium equation (Equation 2.67) will be used 
in the state determination and stiffness formulation procedure as described in Section 
2.2.12. 

2.2.11 Consistent Element Tangent Stiffness Matrix 

The consistent tangent stiffness matrix is obtained using the linearized equations. Setting 
Equation 2.47 to zero and solving for ΔQ yields 

 ( )1 1i− −= + + −11 11 d 1 12ΔQ H V H M G H Δq  [2.68] 

Setting Equation 2.64 to zero and substituting in the result of Equation 2.68 yields 

 
( ) ( ) ( )

( )

1

1

TT

Ti i

−

−

⎡ ⎤+ + − + + − + −⎣ ⎦

= − − + −

g 2 2 22 1 d 12 11 1 d 12

ext 1 d 12 11

K G G H G M H H G M H Δq

ΔQ g G M H H V
 [2.69] 

Substituting in the definition of g yields 

 
( ) ( ) ( )

( ) ( )

1

1

0
ˆo

TT

L TT i T i i idx

−

−

⎡ ⎤+ + − + + − + −⎣ ⎦

= − + − − − + −∫

g 2 2 22 1 d 12 11 1 d 12

ext 1 ext D2 1 d 12 11

K G G H G M H H G M H Δq

ΔQ G Q Q N d d G M H H V
 [2.70] 

Simplifying 
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 1i i+= −ext intKΔq Q Q  [2.71] 

where, 

 ( ) ( ) ( )1TT −= + + − + + − + −g 2 2 22 1 d 12 11 1 d 12K K G G H G M H H G M H  [2.72] 

 ( ) ( ) 1

0
ˆoL Ti T T i i idx −= + − + + −∫int 1 D2 1 d 12 11Q G Q N d d G M H H V  [2.73] 

In this form, K is the tangent stiffness matrix of the element and the right hand side of 
Equation 2.71 can be interpreted as the residual force, equal to the difference between the 
externally applied load and the element internal force corresponding to the previous 
element state, i

intQ . 

2.2.12 Element State Determination 

In typical incremental nonlinear analyses, trial displacements are computed based on 
external loading and the prior state of the structure. This stage is also called the predictor 
phase (Yang and Leu 1991) and is followed by the state determination, or corrector 
phase. The accuracy of the formulation is predominantly governed by this latter stage 
(Yang and Leu 1991). The state determination of mixed elements is often more complex 
than either displacement-based or force-based elements (Alemdar and White 2005).  

The three nonlinear governing equations (Equations 2.36, 2.37, and 2.38) which may be 
seen to operate at the global, element, and section levels respectively, allow for different 
methods of state determination. Global equilibrium is solved iteratively. Element 
compatibility and section equilibrium may be solved iteratively or, alternatively, 
linearized equations may be utilized and the errors converted to residual forces that may 
be eliminated through iterations at the global or element level (Nukala and White 2004b). 
With the option of nonlinear iterations or linearized approximation at both the element 
and section level, four possible algorithms may be developed. It should be noted that the 
nonlinear iteration option, as compared to the linearized approximation option, generally 
requires fewer global iterations at the expense of more costly element or section 
computations. In this work, as in that of others (Alemdar and White 2005 and Tort and 
Hajjar 2007), the linearized approximation option is chosen at both the element and 
section levels.    

Integration along the length of the element needs to be performed to compute many of the 
key element matrices and vectors. Gauss-Lobatto quadrature is utilized to perform the 
integration numerically. In this integration scheme, the location of the integration points 
and their associated weights are selected in a manner such that an integration point is 
located at each element end. This is beneficial, noting that the force and deformation 
values are often the largest at the element ends (e.g., reverse curvature flexure).   
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To begin the process of state determination, the total natural element deformations are 
obtained from the GeometricTransformation object associated with the element. The 
strain and curvature at each integration point are then calculated.  

The shape function matrices are then computed and natural forces are updated using 
Equation 2.68. Then for each integration point the section forces are computed from the 
shape function. Using Equation 2.74, the section strains are updated. 

 1 1i i i i+ +⎡ ⎤= + −⎣ ⎦Σd d f D D  [2.74] 

The strains at each section are sent to their associated section object, which will update 
the uniaxial material models assigned to each fiber, aggregate the sectional response, and 
return the new section stresses and section stiffnesses.  

The element matrices are then computed using Gauss-Lobatto quadrature as described in 
Equations 2.75 through 2.83. 

 ˆ
allsections

T
o kL W= ∑1 D1 δdG N N  [2.75] 

 ˆ
allsections

T
o kL W= ∑2 D2 δdG N N  [2.76] 

 ( )( )
allsections

ˆT
o kL W= − − −∑ D1 ΣV N d d f D D  [2.77] 

 ( )
allsections

ˆT
o kL W= −∑2 D2V N d d  [2.78] 

 
allsections

T
o kL W= ∑11 D1 D1H N f N  [2.79] 

 
allsections

T
o kL W= ∑12 D1 D2H N f N  [2.80] 

 
allsections

T
o kL W= ∑22 D2 D2H N f N  [2.81] 
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allsections

ˆ ˆ ˆ ˆ0 ( )[2] ( )[3] ( )[2] ( )[3]
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

o k

A A B B

L W

⎡ ⎤− − − −
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑d

d d d d d d d d

M  [2.83] 

where, Wk is the integration weight. 

The element internal force and stiffness matrix are computed using Equations 2.73 and 
2.72 respectively. The extra terms in the computation of the vector V (Equation 2.77) 
arise from the choice of algorithm noted earlier, they represent the error at the section 
level that has been pushed to this level to be eliminated by iteration. Note that the vector 
V2 is equivalent to the second term on the right hand side of Equation 2.73. At this point 
it is necessary to add the torsional force and stiffness that were assumed to exhibit a 
linear response (Equations 2.84 and  2.85) 

 GJ
L

θ

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

int

int,with torsion

Q
Q   [2.84] 

 
0

0 GJ
L

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

with torsion

K
K  [2.85] 

where, GJ/L is the torsional stiffness, and θ  is the twist in natural coordinates. 

 Equations 2.84 and 2.85 represent the complete internal element force and tangent 
stiffness matrix in the natural coordinate system. Transformation of these quantities to the 
local and global coordinate systems for assembly and solution at the global level is 
performed by the GeometricTransformation object associated with the element.  

2.2.13 Transformation of Element Force, Displacements, and Stiffness between 
Natural and Global Coordinate Systems 

Three coordinate systems are relevant to each element. First, the natural coordinate 
system has the rigid body modes removed and rotates with the motion of the element. 
Second, the local coordinate system is aligned with the natural coordinate system but has 
the rigid body modes. Third, the global coordinate system is common for all elements and 
is fixed throughout the analysis.  

The accuracy of the transformation between the three coordinate systems has a significant 
effect on the accuracy of the geometric nonlinearity. In the OpenSees framework, the 
abstract class, GeometricTransformation, is defined to provide multiple definitions of the 
force, deformation, and stiffness transformations necessary between the global and 
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natural coordinate systems (Scott et al. 2008). There are various subclasses that contain 
implementations of specific transformation procedures with various kinematic and 
equilibrium assumptions. One subclass, LinearTransformation, would be suitable for 
analyses without geometric nonlinearities. Other subclasses, PDeltaTransformation and 
CorotationalTransformation, utilize nonlinear transformations suitable for analyses with 
large deformations. These two subclasses differ in their accuracy and complexity, with 
the CorotationalTransformation being the more accurate and more complex (de Souza 
2000). Despite the added complexity, the interface of the CorotationalTransformation is 
identical to that of the other transformations, thus adding no complexity to the element 
itself, only additional computation during analyses. In the OpenSees framework, the 
choice of geometric transformations is made by the analyst when defining the structure, 
not by the developer of the finite element. For all analyses presented in this work, the 
CorotationalTransformation was used. 
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Chapter 3 

UNIAXIAL CYCLIC CONCRETE 
CONSTITUTIVE MODEL FOR CCFT 

MEMBERS 

3.1 Introduction 
The accuracy of the mixed beam formulation presented in Chapter 2 depends strongly on 
the ability of the constitutive relations to provide realistic estimations of the behavior of 
CCFT members. Using the fiber method, the response of a cross section is governed by 
the aggregation of response from individual fibers and the uniaxial constitutive relations 
associated with them. Further, the possibility of cyclic loading during static and dynamic 
loading requires the constitutive relations to be applicable to arbitrary strain histories.  

In this work, the stress-strain response of the concrete core is modeled with a set of 
empirical nonlinear curves calibrated with respect to experimental studies available in the 
literature.  

3.2 Monotonic Compressive Response 
When CCFT members are subjected to compression, both the steel tube and the concrete 
core expand laterally due to Poisson’s effect. In the early stages, the steel tube expands at 
a greater rate than the concrete core (i.e., the Poisson’s ratio is larger for the steel tube). 
However, as the loading continues the rate of lateral expansion of the concrete core 
increases due to micro-cracking and eventually a radial interaction occurs. The result of 
this interaction is a confinement pressure on the concrete and a hoop stress in the steel.  

The concrete material model is based largely on recommendations by Chang and Mander 
(1994). The equation proposed by Tsai (1988) is used to model pre- and post- peak 
behavior (Equations 3.1 through 3.7). This equation defines the stress-strain response 
based on four parameters: the initial tangent stiffness, the peak stress, the strain at peak 
stress, and r, a parameter that controls the post-peak behavior.  

 
( )

nxy
D x

=  [3.1] 

 
( )

( )2

1 rx
z

D x

−
=  [3.2] 
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( )
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 [3.3] 
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 [3.4] 

 c cc
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En
f
ε− ′

=
′

 [3.5] 

 ccf yσ − ′=  [3.6] 

 cE E z− =  [3.7] 

where, the “–”superscripts in Equations 3.4 through 3.7 indicate that these values are 
applicable for the compressive response. 

Since there is little interaction between the concrete core and steel tube for low loads, the 
initial tangent stiffness is based the response of unconfined concrete and is given by 
Equation 3.8, as recommended by Chang and Mander (1994).  

 [ ] [ ]3/8MPa 8,200 MPac cE f ′=  [3.8] 

The peak stress, strain at peak stress, and post-peak parameter r, all depend on the 
interaction of the steel tube and the concrete core, specifically the level of confinement 
provided by the steel tube.  

3.2.1 Confinement Model for CCFT Beam-Columns 

The level of confinement experienced by the concrete core has a significant impact on the 
behavior of CCFT members. A set of 24 well-documented experiments on concentrically 
load short columns were selected for calibration of the constitutive relations (Table 3.1). 
These tests were selected to have combinations of high and low values of steel yield 
stress, concrete compressive strength, and D/t ratio. Among other uses described later, the 
calibration set was used to determine an expression for the confinement pressure, fl, 
assumed to be acting on the concrete core of CCFT members. From equilibrium of an 
assumed stress pattern within CCFT section (Figure 1-2), the confinement pressure is 
written in terms of the hoop stress in the steel tube, expressed in terms of the yield stress 
(i.e., αθFy, where αθ is the ratio of hoop stress to yield stress), and the D/t ratio (Equation 
3.9).  

 2
2l yf F

D tθα=
−

 [3.9] 
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Increasing levels of hoop stress in the steel tube induce increasing levels of confinement 
in the concrete core. The increasing confinement has the effect of strengthening the 
concrete core, while the increasing hoop stress has the effect of weakening the steel tube 
noting the von Mises failure criterion. Noting this relationship, an expression for the hoop 
stress, or rather the ratio of hoop stress to yield stress, αθ, in the steel tube is developed 
based on an optimization to match experimental results. The hoop stress ratio in the steel 
tube does not remain constant over the course of loading of CCFT members but it is 
taken as such for simplicity.  

To determine an expression for the hoop stress ratio, αθ, a least squares optimization was 
performed to reduce the error between computed strength and experimental strength for 
the calibration set. The experimental strength was taken as the peak load attained during 
the test or, for specimens that display continual hardening behavior, an estimation was 
made of the load at which the cross section was fully inelastic. The maximum load 
attained during the test, Pmax, and the load used for calibration, Pcal, are listed in Table 
3.2. The computed strength was taken as the sum of the concrete strength noting strength 
enhancement from confinement and the steel strength noting degradation from biaxial 
stresses.  

The confined concrete strength is computed using the model of Mander et al. (1988) for 
symmetric states of confinement (Equation 3.10).  

 7.941.254 2.254 1 2l l
cc c

c c

f ff f
f f

⎛ ⎞
′ ′= − + + −⎜ ⎟⎜ ⎟′ ′⎝ ⎠

 [3.10] 

The von Mises failure criterion is used to determine the longitudinal strength of the steel 
tube, expressed in terms of the yield stress (i.e., αzFy) (Equation 3.11). This model is used 
to calibrate the expression for the hoop stress ratio despite the fact that the steel model 
presented in Chapter 4 does not explicitly provide this stress at the peak concrete 
strength, as is implied by this procedure. As will be seen, the results are sufficiently 
accurate to justify the procedure presented here.   

 ( )21 4 3
2z y yF Fθ θα α α⎛ ⎞= + −⎜ ⎟

⎝ ⎠
 [3.11] 

Using these two expressions for concrete stress and steel stress, the respective cross 
sectional areas, and a value for the ratio of hoop stress to yield stress, αθ, the strength of 
the column may be computed. If the form of the equation for the hoop stress ratio is 
assumed (e.g., linear function of D/t ratio) the coefficients of that equation can be 
determined though a least squares minimization of the error between the experimental 
and computed strengths. The best correspondence between computed and experimental 
strength was found when using a linear function of the D/t ratio for the hoop stress ratio 
(Equation 3.12). The hoop stress ratio is limited to zero since a compressive hoop stress 
will not exist for CCFT members. Computed values of the hoop stress ratio for the 
calibration set are listed in Table 3.2. 
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 ( )0.138 0.00174 0D tθα = − ≥  [3.12] 

Using this expression for the hoop stress ratio (Equation 3.12) and the confinement model 
(Equation 3.10) the peak concrete stress to be used in the stress-strain relationship is 
obtained. The strain at peak stress is also determined based on this assumed level of 
confinement. The strain at peak stress for unconfined concrete is expressed using 
Equation 3.13, following recommendations by Chang and Mander (1994).  

 [ ]1/4MPa
28

c
c

f
ε

′
=  [3.13] 

The increase in strain at peak stress due to confinement follows the model by Richart et 
al. (1929) (Equation 3.14).  

 ( )( )1 5 1cc c cc cf fε ε′ ′ ′= + −  [3.14] 

 



 

31 

Ta
bl

e 
3.

1.
 M

at
er

ia
l a

nd
 G

eo
m

et
ric

 P
ro

pe
rti

es
 o

f t
he

 C
al

ib
ra

tio
n 

Se
t 

 

 

Te
st

 
#

Au
th

or
Ye

ar
Sp

ec
im

en
D 

   
   

(m
m

)
t  

   
 

(m
m

)
D/

t
f' c

   
 

(M
Pa

)
F

y 
   

 

(M
Pa

)
L 

   
 

(m
m

)
L/

D

1
Y

os
hi

ok
a 

et
 a

l.
19

95
C

C
6-

C
-8

23
8.

0
4.

54
52

.4
76

.9
8

57
8.

6
71

4
3.

00
2

Y
os

hi
ok

a 
et

 a
l.

19
95

C
C

6-
D

-8
36

0.
0

4.
54

79
.3

85
.1

2
57

8.
6

10
80

3.
00

3
Y

os
hi

ok
a 

et
 a

l.
19

95
C

C
8-

D
-8

33
6.

0
6.

47
51

.9
85

.1
2

83
4.

5
10

08
3.

00
4

O
'S

he
a 

&
 B

rid
ge

20
00

S
12

C
S

80
A

19
0.

0
1.

13
16

8.
1

80
.2

0
18

5.
7

66
3

3.
49

5
O

'S
he

a 
&

 B
rid

ge
20

00
S

12
C

S
10

A
19

0.
0

1.
13

16
8.

1
10

8.
00

18
5.

7
66

0
3.

47
6

O
'S

he
a 

&
 B

rid
ge

20
00

S
20

C
S

80
B

19
0.

0
1.

94
97

.9
74

.8
0

25
6.

4
66

4
3.

49
7

Y
os

hi
ok

a 
et

 a
l.

19
95

C
C

6-
C

-2
23

8.
0

4.
54

52
.4

25
.4

0
57

8.
6

71
4

3.
00

8
Y

os
hi

ok
a 

et
 a

l.
19

95
C

C
6-

D
-2

36
0.

0
4.

54
79

.3
25

.4
0

57
8.

6
10

80
3.

00
9

Y
os

hi
ok

a 
et

 a
l.

19
95

C
C

8-
D

-2
33

6.
0

6.
47

51
.9

25
.4

0
83

4.
5

10
08

3.
00

10
Y

os
hi

ok
a 

et
 a

l.
19

95
C

C
8-

A
-8

10
8.

0
6.

47
16

.7
76

.9
8

83
4.

5
32

4
3.

00
11

Y
os

hi
ok

a 
et

 a
l.

19
95

C
C

6-
A

-8
12

1.
5

4.
54

26
.8

76
.9

8
57

8.
6

36
5

3.
00

12
G

ia
ko

um
el

is
 &

 L
am

20
04

C
8

11
5.

0
4.

92
23

.4
10

4.
90

36
5.

0
30

0
2.

61
13

Y
os

hi
ok

a 
et

 a
l.

19
95

C
C

4-
A

-2
14

9.
2

2.
96

50
.4

25
.4

0
28

3.
4

44
8

3.
00

14
Y

os
hi

ok
a 

et
 a

l.
19

95
C

C
4-

D
-2

45
0.

0
2.

96
15

2.
0

25
.4

0
28

3.
4

13
50

3.
00

15
Y

os
hi

ok
a 

et
 a

l.
19

95
C

C
4-

C
-2

30
0.

5
2.

96
10

1.
5

25
.4

0
28

3.
4

90
2

3.
00

16
H

an
 &

 Y
ao

20
04

sc
v1

-1
10

0.
0

3.
00

33
.3

58
.5

0
30

3.
5

30
0

3.
00

17
H

an
 &

 Y
ao

20
04

sc
h1

-2
10

0.
0

3.
00

33
.3

58
.5

0
30

3.
5

30
0

3.
00

18
S

ak
in

o 
et

 a
l.

19
85

S
6H

A
10

1.
8

5.
70

17
.9

37
.3

6
30

5.
0

20
0

1.
96

19
Y

os
hi

ok
a 

et
 a

l.
19

95
C

C
6-

A
-2

12
2.

0
4.

54
26

.9
25

.4
0

57
8.

6
36

6
3.

00
20

Y
os

hi
ok

a 
et

 a
l.

19
95

C
C

8-
A

-2
10

8.
0

6.
47

16
.7

25
.4

0
83

4.
5

32
4

3.
00

21
Y

am
am

ot
o 

et
 a

l.
20

02
C

20
A

-2
A

21
6.

4
6.

66
32

.5
24

.3
0

45
2.

0
64

9
3.

00
22

S
ak

in
o 

et
 a

l.
19

85
S

6L
A

10
1.

8
5.

70
17

.9
17

.9
5

30
5.

0
20

0
1.

96
23

S
ch

ne
id

er
19

98
C

1
14

0.
8

3.
00

46
.9

28
.8

1
28

5.
0

60
5

4.
30

24
S

ch
ne

id
er

19
98

C
2

14
1.

4
6.

50
21

.8
28

.8
1

31
3.

0
60

8
4.

30



 

32 

Table 3.2. Calibration Load Data and Hoop Stress Ratio 
Test # Po  (kN) Pmax  (kN) Pcal  (kN) α θ

1 5,095 5,578 5,578 0.047
2 11,166 11,505 11,521 0.000
3 12,567 13,776 13,701 0.048
4 2,345 2,295 2,309 0.000
5 3,114 3,040 3,051 0.000
6 2,329 2,592 2,592 0.000
7 2,972 3,035 3,025 0.047
8 5,390 5,633 5,605 0.000
9 7,672 8,475 8,407 0.048
10 2,269 2,713 2,713 0.109
11 1,729 2,100 2,100 0.091
12 1,533 1,787 1,793 0.097
13 795 941 845 0.050
14 5,112 4,415 4,435 0.000
15 2,515 2,382 2,384 0.000
16 683 780 783 0.080
17 683 820 814 0.080
18 765 971 845 0.107
19 1,224 1,500 1,334 0.091
20 1,903 2,275 2,046 0.109
21 2,771 3,568 3,247 0.081
22 640 953 667 0.107
23 781 881 756 0.056
24 1,235 1,825 1,334 0.100  

3.2.2 Post-peak behavior 

The r factor in Equations 3.2 and 3.3, which controls the nonlinear descending branch, 
was calibrated such that the energy represented by the computed force-deformation 
response was equal to the corresponding energy obtained from the experiments. The 
expression for r based on concentrically loaded short columns was then adjusted to attain 
better correspondence for other testing configurations, including beams and beam-
columns (presented in Sections 5.4 through 5.6). The value of r that yields good results in 
the post-peak range causes a sporadic hardening behavior (i.e., stiffness values larger 
than the initial stiffness) in the pre-peak range. To correct for this, two separate value of r 
are used, one in the pre-peak range and one in the post-peak range. The value of r in the 
pre-peak range is based on recommendations by Chang and Mander (1994) for 
unconfined concrete. Since the transition between the two values of r is made at the point 
peak compressive stress, continuity in both stress and stiffness is guaranteed. The final 
expression for r is shown in Equation 3.15.  

 
[ ]

( )( )
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3.2.3 Comparison of Experimental and Computational Results  

To illustrate the stress-strain response of the concrete model, analyses were performed for 
each experiment in the calibration set. The composite load deformation response obtained 
from the experiment and the analysis for each test is shown in Figure 3-1. The steel and 
concrete components are also plotted (details of the steel model is discussed in Chapter 
4). Various metrics were computed for comparison between experimental and 
computational results (Table 3.3). These include: peak load, strain at peak load, initial 
stiffness, and area under the curve. The average error in peak load and area under the 
curve are less than 10 percent each, indicating good correspondence. The average error in 
strain at peak load and initial stiffness are higher, at approximately 30 percent and 55 
percent respectively. It is noted that among the 24 tests there are tests where the metrics 
are underestimated and also tests where the metrics are overestimated. Since the modulus 
of steel is relatively constant, the errors in stiffness may be caused by inaccurate 
estimation of the concrete modulus; also, undesirable elastic deformations in the 
experimental apparatus may be a cause of an apparent overestimation of the specimen 
stiffness. 
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Figure 3-1. Experimental and Computational Results for the Calibration Set 
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Figure 3-1. Experimental and Computational Results for the Calibration Set (continued) 
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Figure 3-1. Experimental and Computational Results for the Calibration Set (continued) 
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Figure 3-1. Experimental and Computational Results for the Calibration Set (continued) 
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3.2.4 Size effect on the concrete compressive strength  

In the concrete material model proposed by Sakino et al. (2004) a factor was included to 
account for size effect on the concrete compressive strength. This factor was a power 
function of the diameter of the concrete core based on the test results of Blanks and 
McNamara (1935). The test specimens in this investigation were unreinforced and 
showed that compressive strength tends to decrease as the size of the specimen increases. 
However, it is expected that as confining stress is applied to the concrete the size effect is 
less than that of plain concrete and there is a reinforcement level at which the size effect 
is eliminated because the concrete will behave plastically (Kim et al. 1999). Kim et al. 
(1999) developed an equation for the strength of spirally reinforced concrete cylinders 
accounting for size effects and also proposed a limit at which size effects are mitigated. 
Applying this limit to CCFTs, by assuming zero spacing and using an equivalent area of 
transverse reinforcement, would result in the following limit at which the size effect is 
mitigated. 

 8000 2
[MPa]c

D
t f

θα
< +

′
 [3.16] 

For normal strength concrete ( 30MPacf ′ ≈ ), Equation 3.16 yields a D/t limit of 
approximately 24, with stockier tubes exhibiting no size effect and more slender tubes 
experiencing some. Noting that 24 is within the normal range of D/t ratios, albeit on the 
low end, applying a correction for size effect to CCFT members based on the results of 
experiments unconfined concrete may be inaccurate. Additionally, an experimental study 
by Yamamoto et al. (2002) on the concrete compressive strength of short CFT columns 
indicated that CCFT columns do not exhibit size effects. The range of column diameters 
considered in the study by Yamamoto et al. (2002) was approximately 100 mm to 450 
mm. The calibration set presented in Section 3.2.1 contains a similar range of diameters. 
In current practice, however, it is common to have CCFT members with diameters 
ranging up to one to three meters (Roeder et al., 1999). This is in contrast to the ranges of 
steel yield strength, concrete compressive strength, and D/t ratio in the calibration set 
which better represent the range of material and geometric properties used in current 
practice.  Without applicable experimental results over the range of material and 
geometric properties necessary to formulate an appropriate correction, size effect in 
CCFT members is neglected. 

3.2.5 Comparison of Material Models 

It is interesting to examine the difference between the proposed material model and two 
comprehensive material models developed in prior studies. Sakino et al. (2004) and 
Elremaily and Azizinamini (2002) developed constitutive relations for the steel tube and 
concrete core of CCFT members. Figure 3-2 shows experimental load deformation results 
for the 24 CCFT columns in the calibration set used previously. Computational results 
from the proposed model (including the steel model to be discussed in Chapter 4), the 
model developed by Sakino et al. (2004) (denoted “Sakino”) and the model developed by 
Elremaily and Azizinamini (2002) (denoted “Elremaily”) are overlaid.  
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Figure 3-2. Comparison of Material Models for the Calibration Set 
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Figure 3-2. Comparison of Material Models for the Calibration Set (continued) 
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Figure 3-2. Comparison of Material Models for the Calibration Set (continued) 
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Figure 3-2. Comparison of Material Models for the Calibration Set (continued) 
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The comparison shows that the pre-peak response and peak load for all three models are 
similar. The major differences lie in the post-peak response where significant variation 
between models can be observed. In general, the model by Elremaily and Azizinamini 
(2002) shows the most post-peak descent, followed by the model developed by Sakino et 
al. (2004), and the current model. The lower decent observed in the current model is due 
to the fact that it is the only one, among the three, that models hardening in the steel tube, 
and that the post-peak parameter r was adjusted so that better correspondence is achieved 
with various loading cases, not just centrally-loaded short CCFT columns.  

3.3 Monotonic Tensile Response 
Many uniaxial constitutive relations for CCFT members neglect the tensile response of 
the concrete (Shams and Saadeghvaziri 1999; Susantha et al. 2001; Elremaily and 
Azizinamini 2002; Sakino et al. 2004; Hatzigeorgiou 2008). However, modeling the 
tensile response of concrete has been shown to improve the accuracy of nonlinear finite 
element models for composite members (Gourley and Hajjar 1994).  

The shape of the stress-strain response of concrete in tension is similar to that of concrete 
in compression. Noting that, Chang and Mander (1994) recommended the using the same 
shape equations as the compressive response for the tensile response of concrete 
(Equations 3.1 through 3.3) but with different normalized variables (Equations 3.17 
through 3.18).  

 c o

t

x ε ε
ε

+ −
=  [3.17] 

 c t

t

E fn
ε

+ ′
=  [3.18] 

 tf yσ + =  [3.19] 

 cE E z+ =  [3.20] 

where, the “+”superscripts indicate that these values are applicable for the tensile 
response and the term εo is used to shift the tensile response as described later. 

The initial tangent is taken as the elastic modulus. The peak tensile stress, strain at peak 
tensile stress, and post-peak parameter r follow recommendations by Tort and Hajjar 
(2007).  

 [ ] [ ]MPa 0.5 MPat cf f′ ′=  [3.21] 
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 4r+ =  [3.23] 

In contrast to the compressive response, which has non-zero stress for all compressive 
strains, the tensile response is assumed to reach a critical strain at which the material 
experiences linear degradation until zero stress is reached, at which point the concrete is 
said to have cracked and is no longer capable of sustaining tensile stress. Specifically, for 
tensile strains below the critical strain ( crx x+ +< ), the stress-strain response is modeled 
with the equation by Tsai as described above; for tensile strains between the critical strain 
and cracking strain ( cr crackx x x+ +≤ < ) the stress-strain response is modeled by a linear 
equation (Equations 3.25 and 3.26); and for tensile strain greater than the cracking strain 
( crackx x+ ≥ ), the stress-strain response is zero. 

 
( )
( )

cr
crack cr

cr

y x
x x

n z x

+
+

+ +
= −  [3.24] 

 ( ) ( )( )t cr cr crf y x n z x x xσ + + + + +⎡ ⎤= + −⎣ ⎦  [3.25] 

 ( )c crE E z x+=  [3.26] 

3.4 Cyclic Response 
3.4.1 Cyclic Rule Descriptions and Determination Process 

The cyclic rule-based model of Chang and Mander (1994) is adopted in this work.  It 
consists of three types of curves: envelope curves, connecting curves, and transition 
curves. Envelope curves are also referred to as the backbone of the cyclic response. 
Connecting curves represent the unloading and subsequent loading stress-strain path 
between envelope curves. Transition curves describe the path between connecting curves 
of opposite directions.  

The stress-strain response of the envelope curves in tension and compression are 
described in previous sections. The stress-strain response for the connecting curves and 
transition curves, as will be seen, is described by the stress, strain, and tangent modulus at 
two states. An appropriate function to describe the stress-strain relationship would 
provide a continuous, smooth, and monotonic transition. Chang and Mander (1994) 
derive a smooth curve that monotonically transitions from one point and slope to another. 
This curve was used for all rules in the model with exception of the positive and negative 
envelopes and zero stress rules. This curve is defined by Equations 3.27 through 3.31.The 
definition of R (Equation 3.30) has been modified from the original to not allow the result 
of a negative number. If R is computed as negative, then a smooth transition is not 
possible without a change in curvature and the resulting stress-strain relation given by 
Equation 3.27 is not as intended. For this reason, R is limited to a minimum value of zero. 
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It should be noted that an R of zero reduces the nonlinear transition curve to a linear 
transition. 

 ( )[ ]i i iE Aσ σ ε ε= + − +  [3.27] 

 ( )1iE E R A= + +  [3.28] 
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sec
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σ σ
ε ε
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−
 [3.31] 

In the force recovery stage of the nonlinear analysis, the uniaxial strain of each fiber is 
updated. To determine the updated stress and tangent, a state determination process is 
performed that includes determination of the new rule and update of state variables. Each 
rule is described below: 

Rule 0: The initial state of all material fibers is Rule 0. The fiber remains in this state 
until it is subjected to a non-zero strain at which point it transitions to either the tensile or 
compressive backbone curve depending on the sign of the strain. In this state, the stress is 
zero and the tangent is equal to the initial tangent. 

Rule 1: The compressive envelope is described by Rule 1. In this state, the stress and 
strain follow the compressive backbone curve presented above.  

Rule 2: The non-zero portion of the tensile envelope is described by Rule 2. In this state, 
the stress and strain follow the tensile backbone curve presented above. 

Rule 3: Unloading from the compressive backbone (Rule 1) is described by Rule 3. 
Initiation of this rule is detected by a positive (towards tension) strain increment while on 
the compressive backbone curve. The stress-strain response of the material is described 
by the transition curve, which is defined by an initial and final stress, strain, and tangent. 
The initial stress and strain are equal to the stress and strain at the reversal from Rule 1. 
The initial tangent is taken as the elastic modulus. The final stress is taken as zero. The 
final strain ( plε − ) and tangent ( secE− ) are computed based on the recommendations of 
Chang and Mander (1994). 
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where the subscript “r#” on the variables f (stress) and ε (strain) indicate that the variable 
represents the state at last reversal from Rule # (e.g., fr1 represents the stress at which the 
last reversal from Rule 1 occurred). 

Rule 4: Unloading from the tensile backbone (Rule 2) is described by Rule 4. Initiation 
of this rule is detected by a negative (towards compression) strain increment while on the 
tension backbone curve. The stress-strain response of the material is described by the 
transition curve, which is defined by an initial and final stress, strain, and tangent. The 
initial stress and strain are equal to the stress and strain at the reversal from Rule 2. The 
initial tangent is taken as the elastic modulus. The final stress is taken as zero. The final 
strain ( plε + ) and tangent ( secE+ ) are computed based on the recommendations of Chang and 
Mander (1994). 
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Rule 6: The zero valued portion of the tensile envelope is described by Rule 6. In this 
state, the stress and tangent are equal to zero. Upon reaching this Rule, the material is 
said to have cracked.  
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Rule 7: A return to the compressive backbone curve is defined by Rule 7. The response 
of Rule 7 depends on whether it was arrived at after a full reversal (from Rule 10) or after 
a partial reversal (from Rule 16). Thus, the initial stress and tangent, as well as the final 
stress, for this rule are computed upon a reversal from the compressive envelope (Rule 1) 
and updated if a partial reversal (i.e., a reversal from Rule 3) occurs. In either case, the 
initial strain is equal to the reversal strain from Rule 1, εr1, and the final stress and tangent 
lie on the compressive envelope, which is determined based on the final strain. The 
following is computed upon a reversal from Rule 1. 
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 1new rf f f− −= − Δ  [3.40] 
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where newf −  and newE−  are the initial stress and tangent respectively and reε −  is the final 
stress of Rule 7 if arrived at from a full reversal.  

The following is computed upon a reversal from Rule 3 (i.e., a partial reversal) 
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where *newf −  and *newE−  are the initial stress and tangent respectively and *reε −  is the final 
stress of Rule 7 if arrived at from a partial reversal.  
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Rule 8: A return to the tension backbone curve is defined by Rule 8. The response of 
Rule 8 depends on whether it was arrived at after a full reversal (from Rule 9) or after a 
partial reversal (from Rule 17). Thus, the initial stress and tangent, as well as the final 
stress, for this rule are computed upon a reversal from the tension envelope (Rule 2) and 
updated if a partial reversal (i.e., a reversal from Rule 4) occurs. In either case, the initial 
strain is equal to the reversal strain from Rule 2, εr2, and the final stress and tangent lie on 
the tension envelope, which is determined based on the final strain. The following is 
computed upon a reversal from Rule 2. 

 20.15 rf f+Δ =  [3.46] 

 20.22 rε ε+Δ =  [3.47] 

 2new rf f f+ += − Δ  [3.48] 

 2re rε ε ε+ += + Δ  [3.49] 
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where newf +  and newE+  are the initial stress and tangent respectively and reε +  is the final 
stress of Rule 8 if arrived at from a full reversal.  

The following is computed upon a reversal from Rule 4 (i.e., a partial reversal) 
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where *newf +  and *newE+  are the initial stress and tangent respectively and *reε +  is the final 
stress of Rule 8 if arrived at from a partial reversal.  

Rule 9: Loading in the tension region after a full unloading from compression is defined 
by Rule 9. The starting stress, strain, and tangent are the final stress, strain, and tangent 
from the compression unloading (Rule 3). The final stress, strain, and tangent are either 
taken was calculated upon unloading from Rule 2 for a full reversal or recomputed as 
described in the following. The criteria for recomputing is expressed in Equation 3.54. 
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If a recomputation is necessary, the process is as described in Equations 3.46 through 
3.50, but using a value of εr2 given by Equation 3.55. 
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Rule 10: Loading in the compression region after a full unloading from tension is defined 
by Rule 10. The starting stress, strain, and tangent are the final stress, strain, and tangent 
from the tension unloading (Rule 4). The final stress, strain, and tangent are taken was 
calculated upon unloading from Rule 1 for a full reversal. 

Rule 11: The transition between reloading in the tension range (Rule 9) and reloading in 
the compression range (Rule 10) is defined by Rule 11. The initial stress and strain are 
defined as the unloading stress and strain from Rule 9. The initial tangent is taken as the 
elastic modulus. The final strain is given by Equation 3.56. 
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 [3.56] 

The final stress and tangent are the stress and tangent corresponding to the final strain on 
Rule 10. 

Rule 12: The transition between reloading in the compression range (Rule 10) and 
reloading in the tension range (Rule 9) is defined by Rule 10. The initial stress and strain 
are defined as the unloading stress and strain from Rule 10. The initial tangent is taken as 
the elastic modulus. The final strain is given by Equation. 

 ( ) 1 10
2
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r r
a pl r pl

r pl

ε εε ε ε ε
ε ε

− −
+

⎛ ⎞−
= + − ⎜ ⎟⎜ ⎟−⎝ ⎠

 [3.57] 

The final stress and tangent are the stress and tangent corresponding to the final strain on 
Rule 9. 

Rule 13: Reloading in compression from zero stress after cracking has occurred (Rule 6) 
is defined by Rule 13. The initial stress, strain, and tangent are equal to their values upon 
reversal from Rule 6. The final stress, strain, and tangent are the values computed upon 
the last unloading from the compression envelope.  

Rule 14: Unloading from the compressive reloading curve (Rule 13) post-cracking is 
described by Rule 14. The initial stress, strain, and tangent are equal to their values upon 
reversal from Rule 13. The final stress and tangent taken as zero, while the final strain is 
computed as in Equation 3.58. 
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Rule 15: Reloading from the unloading curve (Rule 14) from the compressive reloading 
curve (Rule 13) post-cracking is described by Rule 15. The initial stress, strain, and 
tangent are equal to their values upon reversal from Rule 14. The final stress, strain, and 
tangent values are taken as the stress, strain, and tangent upon unloading from Rule 13. 

Rule 16: Reloading from the unloading curve (Rule 3) from the compressive envelope is 
defined by Rule 16. In the work of Chang and Mander (1994) this rule was treated as a 
branch of Rule 7. The initial stress and strain are taken at their values upon reversal from 
Rule 3. The initial tangent is taken as the elastic modulus. The final strain is equal to the 
strain at reversal from the compression envelope. The final stress and tangent are as 
calculated in Equations 3.43 and 3.45 respectively.  

Rule 17: Reloading from the unloading curve (Rule 4) from the tension envelope is 
defined by Rule 17. In the work of Chang and Mander (1994) this rule was treated as a 
branch of Rule 8. The initial stress and strain are taken at their values upon reversal from 
Rule 4. The initial tangent is taken as the elastic modulus. The final strain is equal to the 
strain at reversal from the compression envelope. The final stress and tangent are as 
calculated in Equations 3.51 and 3.53 respectively.  



 

52 

The flow of rules is shown diagrammatically for pre-cracking behavior in Figure 3-3 and 
for post-cracking in Figure 3-4. 

6
↑

6 6 6 6 6 2
↑ ↑ ↑ ↑ ↑ ↑

2 2 6 2 6 2 2 2 8 6
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Towards 8 8 2 8 6 2 8 8 8 9 2
Tension ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

6 9 6 9 8 9 2 8 9 9 9 3 8
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
2 3 2 3 17 3 8 9 12 11 12 16 17
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

Current Rule 0 1 2 3 4 7 8 9 10 11 12 16 17
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
1 1 4 16 4 7 4 11 10 11 12 16 17

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
10 7 10 1 10 10 7 10 10 7 4

Towards ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
Compression 7 1 7 7 7 1 7 7 1 10

↓ ↓ ↓ ↓ ↓ ↓ ↓
1 1 1 1 1 1 7

↓
1

Pre-Cracking

Figure 3-3. Flow of Rules for Concrete before Cracking 
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Tension ↑ ↑

6 6 6 6 6 14 3
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3 3 6 3 14 14 15 16
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Figure 3-4. Flow of Rules for Concrete after Cracking 
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A summary of the initial and final strains used in the transition curve for each of the rules 
is given in Table 3.4. 

Table 3.4. Summary of Initial and Final Rule Values 

Rule Initial Final 
Strain Stress Tangent Strain Stress Tangent 

0 σ = 0, E = Ec 

1 Compression Envelope 

2 Tension Envelope 

3 1rε  1rf  cE  plε −  0 plE−  

4 2rε  2rf  cE  plε +  0 plE+  

6 σ = 0, E = 0 

7 1rε  newf − or *newf −  newE− or *newE−
reε − or *reε − Computed from final strain

8 2rε  newf + or *newf +  newE+ or *newE+
reε + or *reε + Computed from final strain

9 plε −  0 plE−  2rε  newf +  newE+  

10 plε +  0 plE+  1rε  newf −  newE−  

11 9rε  9rf  cE  bε  Computed from final strain

12 10rε  10rf  cE  aε  Computed from final strain

13 6rε  0 0 1rε  newf −  newE−  

14 13rε  13rf  cE  bε  0 0 

15 14rε  14rf  cE  aε  Computed from final strain

16 3rε  3rf  cE  1rε  *newf −  *newE−  

17 4rε  4rf  cE  2rε  *newf +  *newE+  

3.4.2 Shifting of the Tensile Envelope 

Before cracking has occurred and upon reversals from the compressive envelope, the 
tensile envelope is shifted such that tensile stress is achieved immediately after the 
compressive stress vanishes upon unloading. The shift is defined by a single parameter, 
εo, and is calculated as follows. Two different methods are employed depending on the 
whether the criteria of Equation 3.54 is satisfied. If the criteria is satisfied, then a new 
value for εr2 is forced and new points are calculated just as if a reversal from Rule 2 has 
occurred, the value of εo is reset as in Equation 3.59.  
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If the criteria of Equation 3.54 is not satisfied, the change in the parameter describing the 
shift of the tensile branch is computed as in Equation 3.60. 

 2
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+ +Δ = − +

+
 [3.60] 

For both cases, it is necessary for continuity to shift all referenced strains (e.g., εr2, εa, 
etc.) by the change in value of εo.  
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Chapter 4 

UNIAXIAL CYCLIC STEEL CONSTITUTIVE 
MODEL FOR CCFT MEMBERS 

4.1 Introduction 
Experimental research on CCFT members have exhibited several features that can be 
attributed to the cyclic response of the steel tube. These features include: elastic 
unloading following a load reversal, decreasing elastic zone, and local buckling of the 
steel tube (Gourley et al. 2008). The ability of the constitutive relation to capture these 
effects these is thus important. Effects from the cold-forming process of the steel tubes 
should also be included in a comprehensive constitutive relation, notably the smooth 
transaction between elastic and plastic response, rather than the formation of a significant 
yield plateau. In this work, fracture of the steel tube is neglected, as it typically does not 
occur until very late in loading histories. 

Constitutive models recommended for CCFT in prior studies have often consisted of 
simple elastic-perfectly plastic or hardening models shifted for the effect of biaxial stress 
(Elremaily and Azizinamini 2002; Sakino et al. 2004; Hatzigeorgiou 2008). These 
effectively ignore any effect of residual stress or local buckling. 

Constitutive relations may be derived either as explicit functions of stress and strain, as 
the concrete constitute relation was derived in the previous chapter. Alternatively, the 
relation may be derived based on a set of hardening and flow rules that act on the 
incremental strain. A tangent stiffness is computed based on the incremental strain, 
material parameters, and state variables that depend on the prior loading history. The 
latter option is used as the basis for the proposed steel constitutive relation.  

4.2 Plasticity Model 
The steel constitutive relation is formulated in an incremental form based on a bounding 
surface plasticity formulation by Shen et al. (1995).  
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Figure 4-1. Uniaxial Cyclic Stress-Plastic Strain Curve 

The total strain increment is decomposed into an elastic component and plastic 
component (Equation 4.1).  

 t e pε ε εΔ = Δ + Δ  [4.1] 

The stress increment is defined as the product of the strain increment and a modulus 
(Equations 4.2 through 4.4). The appropriate modulus depends on which component 
(elastic, plastic, or total) of the strain is utilized. Further, the tangent modulus, Et, may be 
written in terms of the elastic modulus, Ee, and the plastic modulus, Ep, (Equation 4.5). 

 t tEσ εΔ = Δ  [4.2] 

 e eEσ εΔ = Δ  [4.3] 

 p pEσ εΔ = Δ  [4.4] 

 
p e

t
p e

E EE
E E

=
+

 [4.5] 
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The elastic component is assumed to hold a linear relationship (Equation 4.6). 

 e eEσ ε=  [4.6] 

When the stress lies within the elastic range, the tangent modulus is assumed to be equal 
to the elastic modulus (the plastic modulus is taken as infinity). The size of the elastic 
range is described by Equation 4.7.  

 ( ) ( ) ( )exp 100 1 exp 100p p

o

a b a cκ α ε α ε
κ

= − − − − − −  [4.7] 

where, κ is the half of the current size of the elastic range; κo is half the initial size of the 
elastic range, taken as the yield strength of the steel (Fy); pε  is the effective plastic strain 
range, defined as the difference between the maximum and minimum plastic strains the 
material has experienced; and α, a, b, c are material constants,  

If the stress lies outside of the elastic range, the plastic modulus takes a finite value given 
by Equations 4.8 and 4.9.  

 p p
o

in

E E h δ
δ δ

= +
−

 [4.8] 

 h e fδ= +  [4.9] 

where, p
oE  is the slope of the bounding line; δ is the distance between the bounding 

surface and the current (loading) point; δin is the value of δ at the point of initial yield in 
the current loading path; and e and f, are material constants.  

The bounding line does not remain constant throughout the strain history. The slope of 
the bounding line is assumed to decrease with the plastic work (Equation 4.10). 

 
1

p
p oi

o p

EE
Wω

=
+

 [4.10] 

where, p
oiE  is the initial slope of the bounding line, a material constant; Wp is the plastic 

work (Equation 4.11); and ω is a material constant. 

 ( ) ( ) ( )
0

tp pW t s s dsσ ε= ∫  [4.11] 

where, t is a time parameter and s is the variable of integration. Equation 4.11 is 
computed as the sum of the product of the stress and change in plastic strain for all 
previous steps. 
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Further, the position of the bounding is assumed to increase with plastic strain (Equation 
4.12). 

 ( ) ( )2expoκ κ κ κ ζρ∞ ∞= + − −  [4.12] 

where, κ  is the current size of the bounding line; κ∞  is the limiting value of the 
bounding line, taken at the ultimate tensile strength of the steel (Fu); oκ  is the initial size 
of the bounding line, a material constant; ρ is half of the effective plastic strain range 
( 1

2
pε ); and ζ is a material constant.  

For better correlation to cyclic behavior that does not include full reversals, the virtual 
bounding line and memory line are introduced (Figure 4-2).  

vX
vX ′
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vδ

O pε

X
X ′

mX
mX ′

xO
xO ′

Y
Y ′mY

mY ′

D
D′
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B
κ mκ

vδ

κ mκ

Figure 4-2. Definition of Virtual Bounding Line and Memory Line 

Both the virtual bounding line and the memory line are assumed to lie parallel to the 
bounding line. The initial size of the memory line is taken as the yield strength of the 
steel and the size grows symmetrically with the loading point (i.e., the size of the memory 
line is the largest stress attained by the material). If a loading path reverses before 



 

59 

reaching the memory line (e.g., Point B in Figure 4-2), the virtual bounding line is 
created outside the bounding line by the same amount the loading path was short of the 
memory line (e.g., line Xv-X′v in Figure 4-2). Along the reversed path, until the memory 
line on the opposite side is reached (e.g., Point C in Figure 4-2), the plastic modulus is 
computed with respect to the virtual bounding line, not the bounding line, as described by 
Equation 4.13, where δv is the distance between the virtual bounding line and the 
bounding line.  

 p p v
o

in

E E h δ δ
δ δ

+
= +

−
 [4.13] 

This section describes the uniaxial bounding surface model as proposed by Shen et al. 
(1995) for structural steel. As discussed in Sections 4.2.2, 4.2.3 and 4.3, modifications to 
this model were made to better describe the stress-strain response of cold-formed circular 
steel tubes used in CCFT members.  

4.2.1 Material Properties 

The material parameters required for the steel material model are given in Table 4.1 as 
reported in Mamaghani et al. (1996) with minor changes as noted later. 

Table 4.1. Steel Model Material Parameters 

Parameter Fy ≤ 357 MPa 357 MPa < Fy 
≤ 524 MPa Fy ≥ 524 MPa 

oκ  1.06 Fy 1.06 Fy 1.06 Fy 
a –0.505 –0.528 –0.553 
b 2.17 1.88 6.47 
c 14.4 18.7 34.8 
e 500 316 300 
f 0.300 Ee 0.484 Ee 0.361 Ee 
α 0.191 0.217 0.175 
w 3.08 / Fy 4.00 / Fy 2.67 / Fy 

p
oiE  8.96 × 10-3 Ee 1.01 × 10-2 Ee 7.85 × 10-3 Ee 

ζ 9.89 × 10-4 / 2
yε  1.52 × 10-3 / 2

yε  8.04 × 10-3 / 2
yε  

The majority of experimental reporting includes documentation of the ultimate strength 
of steel tube. For the cases for which it is not reported, an empirical relation was 
developed to estimate the ultimate strength. This relation (Equation 4.14) was based on 
the yield strength and ultimate strength reported for steel tubes from other CCFT 
members. 

 [ ]( )1.6741 7.306 MPau y yF F F −= +  [4.14] 
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4.2.2 Initial Plastic Strain 

Due to the residual stresses generated during fabrication, cold-formed steel tubes have a 
low proportional limit with no distinct yield plateau or transition region to hardening. In 
this study, as in the prior studies of Tort and Hajjar (2007) and Hajjar et al. (1998) an 
initial plastic strain, εp

o, is used to model the effect of the cold-forming process. A value 
of εp

o = 0.0006 provides the best fit a suite of tensile tests performed on coupons cut from 
circular steel tubes (Table 4.2 and Figure 4-3). Also, to better match the tensile coupon 
tests and to be consistent with the typical 0.2% offset definition of yield, the value of the 
size of the initial bounding lines was taken as 1.06 Fy for the entire range of materials 
considered. This is in contrast to the values reported by Mamaghani et al. (1996), who 
used alternative values that varied between grades of steel and were based on 
experimental results. 

Table 4.2. Material Properties of Tensile Coupon Tests 
Test 

# Author Year Specimen F y 

(MPa)
F u 

(MPa)
Es   

(MPa)
1 Bridge & O'Shea 1997 165x3.0 363.3 466.9 200,600
2 Bridge & O'Shea 1997 190x2.0 252.4 368.4 204,500
3 Bridge & O'Shea 1997 190x1.6 303.4 380.2 206,600
4 Bridge & O'Shea 1997 190x1.2 185.7 307.6 178,400
5 Bridge & O'Shea 1997 190x1.2''R'' 203.1 299.0 188,300
6 Bridge & O'Shea 1997 190x1.0 210.7 322.1 177,000
7 Marson & Bruneau 2000 CFST 64 449.0 562.0 199,700
8 Marson & Bruneau 2000 CFST 34 415.0 515.0 177,500
9 Marson & Bruneau 2000 CFST 42 505.0 595.0 228,801
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Figure 4-3. Comparison of Experimental and Computational Tensile Coupon Results 
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Figure 4-3. Comparison of Experimental and Computational Tensile Coupon Results 
(continued) 

4.2.3 Adjustment for Biaxial State of Stress 

Due to lateral expansion of the concrete core the steel tube is under a state of biaxial 
stress. To account for this, the initial yield range is adjusted based on the level of hoop 
stress assumed to the present in the steel tube. The size of the initial yield surface, κ, is 
computed using Equation 4.7, noting the initial plastic strain. The size is then multiplied 
by the results of Equations 1.4 and 1.5 for the positive stress and negative stress yield 
limits respectively to obtain the size of the initial yield surface accounting for the biaxial 
state of stress. This adjustment is made only for the initial yield surface. A similar 
adjustment is made in the steel models of other researchers (Elremaily and Azizinamini 
2002; Sakino et al. 2004; Hatzigeorgiou 2008). 
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4.3 Local Buckling of the Steel Tube 
Under compressive loading the steel tube of CCFT members is susceptible to local 
buckling. Due to the concrete core, the steel tube only has the ability to locally buckle 
outward. In contrast to hollow tubular members that may also buckle inward, this is a 
higher mode of buckling that both delays the onset of local buckling and increases the 
compressive capacity (Bradford et al. 2002).  

4.3.1 Monotonic Response 

The monotonic compressive response of the proposed constitutive model is modified 
from the model of Shen et al. (1995) to consist of three regions. The first region is the 
model as described previously, beginning with the elastic branch and continuing with the 
smooth plastic response. The second region is commences after the initiation of local 
buckling, where the response is assumed to be linear strength degradation. The third 
region is a constant residual stress.  

Strain may be used to determine the initiation of local buckling in steel tubes (Tort and 
Hajjar 2007). Based on experimental observations that explicitly denote the local 
buckling of the steel tube, an expression for the strain at which local buckling occurs has 
been derived. The results from two studies are used to calibrate the equation (Table 4.3 
and Figure 4-4). Schneider (1998) indicates the initiation of local buckling for typical 
concentrically loaded short columns. Bridge and O’Shea (1997) present the results of 
concentrically loaded short CCFT tests where only the steel tube was loaded and was 
unbonded from the concrete core. For these tests, the entire load is assumed to be taken 
by the steel tube and local buckling is assumed to initiate at the occurrence of the peak 
load. These experimental results were analyzed and a power function was found to 
provide a strong correlation to the data (correlation of R2 = 0.925) (Equations 4.15 and 
4.16).  

 ( )1.4130.2139lb y Rε ε −=  [4.15] 

 y

s

FDR
t E

=  [4.16] 

If the strain at local buckling, εlb, is computed as less than the yield strain, εy, then the 
local buckling can be considered elastic. This only occurs for values of R greater than 
0.3357. 
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Figure 4-4. Calibration of Strain at Local Buckling 

0 0.05 0.1 0.15 0.2 0.25 0.3
0

5

10

15

20

25

Stiffness Parameter, R

S
tra

in
 a

t L
oc

al
 B

uc
kl

in
g 

/ Y
ie

ld
 S

tra
in

 

 

Experimental Results
Model



 

65 

Ta
bl

e 
4.

3.
 P

ro
pe

rti
es

 o
f S

pe
ci

m
en

s U
se

d 
fo

r C
al

ib
ra

tio
n 

of
 S

tra
in

 a
t L

oc
al

 B
uc

kl
in

g 

 

F
y

E
s

D
t

D
/t

L
R

e
lb

e
y

e
lb

/e
y

(M
P

a)
(M

P
a)

(m
m

)
(m

m
)

(m
m

)
(m

m
/m

m
)

(m
m

/m
m

)
1

S
ch

ne
id

er
19

98
C

1
28

5.
0

18
9,

47
5

14
0.

8
3.

00
46

.9
3

63
5.

0
0.

07
1

0.
02

21
1

0.
00

15
04

14
.7

0
2

S
ch

ne
id

er
19

98
C

2
31

3.
0

20
6,

01
1

14
1.

4
6.

50
21

.7
5

63
5.

0
0.

03
3

0.
03

08
3

0.
00

15
19

20
.2

9
3

O
'S

he
a 

&
 B

rid
ge

19
97

S
10

B
S

C
21

0.
7

17
7,

00
0

19
0.

0
0.

86
22

0.
93

65
8.

5
0.

26
3

0.
00

17
1

0.
00

11
9

1.
44

4
O

'S
he

a 
&

 B
rid

ge
19

97
S

12
B

S
C

18
5.

7
17

8,
40

0
19

0.
0

1.
13

16
8.

14
65

9.
5

0.
17

5
0.

00
30

8
0.

00
10

41
2.

96
5

O
'S

he
a 

&
 B

rid
ge

19
97

S
16

B
S

C
30

6.
1

20
7,

40
0

19
0.

0
1.

52
12

5.
00

65
7.

5
0.

18
4

0.
00

23
8

0.
00

14
76

1.
61

6
O

'S
he

a 
&

 B
rid

ge
19

97
S

20
B

S
C

25
6.

4
20

4,
70

0
19

0.
0

1.
94

97
.9

4
65

7.
0

0.
12

3
0.

00
50

0
0.

00
12

53
3.

99

Te
st

 
#

S
pe

ci
m

en
 

N
am

e
Y

ea
r

A
ut

ho
r



 

66 

Once local buckling has initiated, the stress-strain response is assumed to experience a 
linear degradation region followed by a region of constant residual stress. The calibration 
of the parameters defining the slope of the linear descending branch and the constant 
residual stress was done in conjunction with the calibration of the post-peak compression 
region of the concrete constitutive relation described in Section 3.2.2.  The form of the 
equation governing the constant residual stress is based on the work of Bradford, Loh, 
and Uy (2002) (Equation 4.18). The parameter, Rcrit, in Equation 4.18 was calibrated 
along with the r factor, which governs the post-peak behavior of the concrete (Equations 
3.2 and 3.3). The two parameters were calibrated such that the energy represented by the 
computed force-deformation response was equal to the corresponding energy obtained 
from the experiments for the calibration set of stub columns presented in Section 3.2.1. 
The r factor was later altered to provide better correspondence to specimens with other 
loading conditions, however, Rcrit was left unaltered. A constant value is assumed for all 
steel tubes for the slope of the linear descending branch (Equation 4.17). The value was 
chosen to provide the best correspondence between the computed and experimental 
force-deformation response in the region where softening of the steel tube is predicted to 
occur. 

 
30

s
s

EK = −  [4.17] 

 ( )/ for 0.17
otherwise

lb crit crit
rs

lb

f R R R R
f

f
⎧ > =

= ⎨
⎩

 [4.18] 

where flb is the stress at local buckling. 

4.3.2 Cyclic Response 

Further modifications are necessary to model the response of cyclic local buckling of the 
steel tube. Local buckling is first triggered by the strain limit given by Equation 4.15. The 
reference strain to which this value is compared needs to be updated based on plasticity 
experience by the material. Upon unloading from tensile plasticity the strain at zero 
stress, εlb,ref, is computed assuming a linear relationship. It is then this strain that serves as 
the reference to determine the initiation of local buckling, (Equation 4.19). 

 ( ),yes if
Local Buckling

no otherwise
lb ref lbε ε ε⎧ < −⎪= ⎨

⎪⎩
 [4.19] 

After the first initiation of local buckling, later local buckling is triggered by a stress 
limit. The stress at which local buckling occurs is defined as the last stress attained while 
local buckling was occurring. This behavior was observed experimentally by Fukumoto 
and Kusama (1985) for rectangular steel tubes. Further, to provide a smooth transition to 
this limiting stress, the bounding line in the compressive region (i.e., Line Y-Y′ in Figure 
4-1) is defined to be equal to the critical local buckling stress.  
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To approximate the response of unloading of the buckled steel tube, both the size of the 
elastic range and the plastic modulus are reduced as a function of the tube slenderness 
and the plastic work of the material. Equations 4.20 and 4.21 were derived to attain good 
correlation between the experimental and analytical results for the cyclic non-
proportionally loaded cantilever beam-column tests by Marson and Bruneau (2004) 
(Table 4.3 and Figure 4-5 through Figure 4-8). In these tests, a constant axial load was 
applied to a cantilever column. Increasing cyclic transverse displacements were then 
applied to the free end of the column. Two elements with three sections each were used 
to model the column. Noting the two-dimensional nature of the loading, the fiber 
discretization took the form of strips, with 50 strips along the height of the section for 
each the steel and concrete. The steel and concrete stress-strain response shown in Figure 
4-5 through Figure 4-8 is obtained from the extreme fiber for each material at the base of 
the column. Comparisons are made between experimental and computational results for 
both the horizontal force at the free end of the column and the moment at the base of the 
column. 

 reduced κκ γ κ=  [4.20a] 

 1 15 0.05
p

k
y

WR
F

γ
⎛ ⎞

= − ≥⎜ ⎟
⎜ ⎟
⎝ ⎠

 [4.20b] 

 p
p p

reduced E
E Eγ=  [4.21a] 

 1 10 0.05p

p

E
y

WR
F

γ
⎛ ⎞

= − ≥⎜ ⎟
⎜ ⎟
⎝ ⎠

 [4.21b] 
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Figure 4-5. Cyclic Local Buckling Calibration Results of Specimen CFST 51 
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Figure 4-6. Cyclic Local Buckling Calibration Results of Specimen CFST 34 
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Figure 4-7. Cyclic Local Buckling Calibration Results of Specimen CFST 64 
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Figure 4-8. Cyclic Local Buckling Calibration Results of Specimen CFST 42 
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Chapter 5 

VERIFICATION OF THE FINITE ELEMENT 
FORMULATION 

5.1 Introduction 
Results of material and geometric nonlinear analyses using the finite element formulation 
are presented in this chapter. The analyses herein are intended to provide a 
comprehensive investigation to the accuracy of the formulation. As such, the members 
analyzed were chosen to have a broad range of loading and boundary conditions as well 
as material and geometric properties. Computational results are compared to analytical 
solutions and experimental results as appropriate. Comparisons are made at not only the 
element level but section and material level. Where practical, quantitative comparisons 
were made with the use of various displacement, force, and energy based metrics.  

The comparisons have been divided into seven verification sets. The first includes elastic 
geometrically nonlinear problems. The remaining sets are materially and geometrically 
nonlinear CCFT experiments grouped by loading condition. In total, 107 experiments 
have been modeled, including 11 cyclic experiments and 96 monotonic experiments.  

5.2 Elastic Geometrically Nonlinear Problems 
A series of elastic analyses were performed to verify the accuracy of geometrically 
nonlinear formulation of the mixed beam element. 

5.2.1 Euler Buckling of a Simply Supported Column  

The ability of the formulation to detect the Euler buckling load is studied by analyzing a 
simply supported column. The column is without imperfection and the load is applied 
concentrically. The critical load of the column is given analytically by Equation 5.1, 
assuming a effective length factor, K, of 1.   

 
( )

2

2cr
EIP

KL
π

=   [5.1] 

In the analysis, the critical load is the load at which the minimum Eigen value of the 
stiffness matrix becomes zero. The analyses were performed with one to five elements 
along the height of the column. The number of integration points in each element was 
found to not significantly affect the results; the results shown are with five integration 
points per element. The percent error of the computational results (Figure 5-1c) is shown 
to be small for number of element greater than one. 
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(a) Configuration 

 
 
 

 
E = 200,000 MPa 

I = 4.16 × 107 mm4 
A = 6.45 × 106 mm2 

L = 3,050 mm 
Pcr = 8.827 × 106 N 

 
 
 

(b) Properties 
 
 
 

Number of Elements Percent Error 
1 21.6 % 
2 0.752 % 
3 0.158 % 
4 0.051 % 
5 0.021 % 

(c) Results 
 
 
 

Figure 5-1. Configuration and Results of the Analysis of a Simply Supported Beam under 
Axial Loading 
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5.2.2 Cantilever under Axial Loading 

To assess the accuracy of the formulation in the post buckling range, the response of a 
cantilever column under axial loading is studied. The structure, as described in Figure 
5-2a, is initially straight. A small being moment is applied at the free end to introduce a 
perturbation. Analyses are performed with 3, 5, and 10 elements along the height of the 
column, each element with 5 integration points. The analysis results are compared to the 
analytical solution given in Southwell (1941).  

The results (Figure 5-2c) demonstrate that the current formulation accurately predicts the 
behavior. The accuracy increases with the number of elements used, however, the results 
show good correlation with just 3 elements along the height of the column. 
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(c) Results 

Figure 5-2. Configuration and Results of the Analysis of a Cantilever under Axial 
Loading 
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5.2.3 Cantilever under Pure Bending 

The ability of the formulation to perform under large displacements and rotations can be 
examined with the analysis of a cantilever subjected to pure bending (Figure 5-3a). The 
moment was increased until the cantilever is fully wrapped upon itself. Analyses are 
performed with 3, 5, and 10 elements along the length of the beam, each element with 5 
integration points.  

The results (Figure 5-3c) demonstrate that the accuracy increases with the number of 
elements used, converging to the correct solution. With only three or five elements along 
the length of the member, the small strain assumption used for the natural deformations is 
clearly inappropriate for this case of extreme deformation. However, the use of 10 
elements along the length of the cantilever provides accurate results.  

L

M

u
v

 
(a) Configuration 

E = 6.895 
I = 4.16 × 105 mm4 
A = 6.45 × 105 mm4 

L = 25.4 mm 
 
 

(b) Properties 

0 0.5 1 1.5
0

1

2

3

4

5

6

7

Normalized Displacement (v/L)

N
or

m
al

iz
ed

 M
om

en
t (

M
L/

E
I)

 

 

Theory
3 Elements
5 Elements
10 Elements

0 0.2 0.4 0.6 0.8
0

1

2

3

4

5

6

7

Normalized Displacement (u/L)

N
or

m
al

iz
ed

 M
om

en
t (

M
L/

E
I)

 

 

Theory
3 Elements
5 Elements
10 Elements

 
(c) Results 

Figure 5-3. Configuration and Results of the Analysis of a Cantilever under Pure Bending 

5.2.4 Cantilever under Transverse Tip Loading 

To assess the accuracy of the formulation under tension stiffening behavior, the response 
of a cantilever column under transverse tip loading (Figure 5-4a) is studied. Analyses are 
performed with 3, 5, and 10 elements along the height of the column, each element with 5 
integration points. The analysis results are compared to the analytical solution given in 
Mattiasson (1981).  
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The results (Figure 5-4c) demonstrate that the current formulation accurately predicts the 
behavior. The accuracy increases with the number of elements used, however, the results 
show good correlation with just 3 elements along the height of the column. 
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(c) Results 

Figure 5-4. Configuration and Results of the Analysis of a Cantilever under Transverse 
Tip Loading 
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5.2.5 Right-Angled Simply Supported Frame 

The final static nonlinear elastic benchmark problem is the elastic postbuckling analysis 
of a hinged right-angle frame. The analysis is performed 10 total elements, five along the 
length of the each member and each element with 5 integration points. The analysis 
results are compared to the computational solution given in Simo and Vu-Quoc (1986). 
The results (Figure 5-5c) demonstrate that the current formulation accurately predicts the 
behavior.  
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(c) Results 

Figure 5-5. Configuration and Results of the Analysis of a Right-Angled Simply 
Supported Frame 
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5.2.6 Fixed-Fixed Beam under Dynamic Step-Loading 

To assess the accuracy of the formulation under dynamic loading, the fixed-fixed beam 
subjected to a step loading (Figure 5-6) studied by Hsaio and Jang (1989) is analyzed. 
Noting symmetry, only half the beam was analyzed. The analysis used the same mesh 
density, ten elements, and time step, 50 μsec, as Hsaio and Jang (1989). Five integration 
points were used for each element. Since a consistent mass matrix was not derived for the 
element, the mass matrix for a linear elastic beam element is used, specifically the mass 
in the translational directions is mele/2 and the mass in the rotational directions is 
meleLele

2/420 (Cook et al. 2002). The system is undamped and time intergration was 
performed using the Newmark method (γ = 0.50, β = 0.25). The results compare well to 
the computational results of Hsaio and Jang (1989) (Figure 5-6).  
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(c) Results 

Figure 5-6. Configuration and Results of the Dynamic Analysis of a Fixed-Fixed  

5.3 Monotonic Stub Column Experiments 
A series of 24 monotonic short concentrically loaded (stub) column tests (setup as shown 
in Figure 5-7) was used in the calibration of the material constitutive models. An 
additional series of 24 monotonic stub column tests was compiled to validate the 
performance of the element formulation.  
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Figure 5-7. Experimental Setup of Stub Column Test 

A preliminary mesh refinement study indicated that the results were nearly invariant to 
the number of elements, number of sections, and fiber discretization. This is likely due to 
the uniform strain throughout the member. The analyses shown in this section were 
performed with two elements along the length of the column, with three integration 
points per member, and a fiber mesh with 8 fibers in the steel tube and 16 fibers in the 
concrete core. Analyses were run in displacement control, up to the same the peak 
deformation as experienced in the experiment.  

The material and geometric properties of each of the specimens is listed in Table 5.1. 
Experimental and computational load deformation plots are shown in Figure 5-8 with 
steel and concrete components for the computational model also shown. Four metrics 
were computed for comparison of the experimental and computational results. They are: 
1) peak load, the largest load attained at any time; 2) strain at peak load; 3) initial 
stiffness, computed as the secant stiffness between the state of zero load and the state of 
one-third of the peak load; and 4) area under the curve. These metrics, with 
corresponding error computations, are listed in Table 5.2. 

The results indicate very good accuracy in terms of peak load and area under the curve 
with an average error of less than 10 percent. The strain at peak load was consistently 
low, with an average error of approximately 35 percent. The error in strain at peak load 
was especially high for specimens that exhibited a hardening response during the 
experiment. The initial stiffness was consistently high, with an average error of 
approximately 65 percent, although some tests overestimate the stiffness while others 
underestimate it (in addition, as will be seen later, for beam-column tests, the initial 
stiffness is more often underestimated).  As may be seen in Figure 5-8, the general 
correlation with the experimental response is very good.  
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Figure 5-8. Validation Results for Stub Columns 
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Figure 5-8. Validation Results for Stub Columns (continued) 
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Figure 5-8. Validation Results for Stub Columns (continued) 



 

85 

0 0.002 0.004 0.006 0.008 0.01 0.012
0

200

400

600

800

1000

1200

1400

1600

1800

Strain (mm/mm)

(s) Test #19; O'Shea & Bridge 2000; Specimen: S20CS50A

Fo
rc

e 
(k

N
)

 

 

Experiment
Analysis
Steel Only
Concrete Only

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
0

200

400

600

800

1000

1200

1400

1600

1800

Strain (mm/mm)

(t) Test #20; O'Shea & Bridge 2000; Specimen: S16CS50B

Fo
rc

e 
(k

N
)

 

 

Experiment
Analysis
Steel Only
Concrete Only

0 0.002 0.004 0.006 0.008 0.01 0.012
0

500

1000

1500

2000

2500

Strain (mm/mm)

(u) Test #21; O'Shea & Bridge 2000; Specimen: S30CS80A

Fo
rc

e 
(k

N
)

 

 

Experiment
Analysis
Steel Only
Concrete Only

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
0

2000

4000

6000

8000

10000

12000

Strain (mm/mm)

(v) Test #22; Bergmann 1994; Specimen: RU11

Fo
rc

e 
(k

N
)

 

 

Experiment
Analysis
Steel Only
Concrete Only

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

500

1000

1500

2000

2500

Strain (mm/mm)

(w) Test #23; Han & Yao 2004; Specimen: scv2-1

Fo
rc

e 
(k

N
)

 

 

Experiment
Analysis
Steel Only
Concrete Only

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
0

500

1000

1500

2000

2500

Strain (mm/mm)

(x) Test #24; Han & Yao 2004; Specimen: sch2-1

Fo
rc

e 
(k

N
)

 

 

Experiment
Analysis
Steel Only
Concrete Only

Figure 5-8. Validation Results for Stub Columns (continued) 
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5.4 Monotonic Bending Experiments 
The uniaxial constitutive relations were derived to mimic the response of short 
concentrically loaded columns. However, they are assumed to be relevant to the whole 
spectrum of beam-column behavior. It is thus important to validate the response over the 
entire spectrum, including the opposite extreme, pure bending. A validation set of 24 
CCFT beams subjected to flexure only was compiled. The loading of each of the beams 
was in one of three different configurations: direct moment, four-point bending, three-
point bending (Figure 5-9). Under the direct moment configuration, moments are applied 
at the member ends and the entire member is subjected to uniform moment. Under the 
four-point bending configuration, two point loads are applied to the specimen at equal 
distances in from the member ends, creating a center span with uniform moment. Under 
the three-point bending configuration, one point load is applied at the midspan of the 
member; there is no region of uniform moment.  

Preliminary mesh refinement studies were performed on each of the three configurations. 
Similar to those for the stub columns, the studies indicated that the results were nearly 
invariant to the number of elements and sections. Noting that there is little dependence of 
the mesh density on the results, the minimum number of elements was chosen for each 
specimen type. The direct moment analyses were performed with one element along the 
length of the member; the four-point bending analyses were performed with four 
elements along the length of the member (so as to be able to assess the response at 
midspan to compare with the experimental measurements); and the three-point bending 
analyses were performed with two elements along the length of the member. For all three 
configurations, each element with three integration points per member. Noting the two-
dimensional nature of these tests, the fiber discretization took the form of strips, with 50 
strips along the height of the section for each the steel and concrete. The fiber 
discretization was selected such that it was dense enough to not affect the accuracy of the 
results within a small tolerance. Analyses were run in displacement control, up to the 
same the peak deformation as experienced in the experiment.  
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(a) Direct Moment 

 
(b) Four-Point Bending 

 
(c) Three-Point Bending 

Figure 5-9. Experimental Setup of Pure Bending Tests 

The material and geometric properties of each of the specimens is listed in Table 5.3. 
Experimental and computational moment-curvature or moment-deformation plots are 
shown in Figure 5-10. Three metrics were computed for comparison of the experimental 
and computational results. They are: 1) peak moment, the largest moment attained at any 
time; 2) initial stiffness, computed as the secant stiffness between the state of zero 
moment and the state of one-third of the peak moment; and 3) area under the curve. Since 
the peak moment was attained at the end of the test in nearly all cases, the deformation at 
peak moment was not computed as a metric. These metrics, with corresponding error 
computations, are listed in Table 5.4. 

Similar to the stub column tests, both the peak moment and area under the curve show 
excellent correspondence between the experimental and analytical data each with an 
average error less than 2 percent. Also similar to the stub column tests is the over 
estimation of the initial stiffness by the computational model, with an average error of 
approximately 25 percent, although some tests overestimate the stiffness while others 
underestimate it. 
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Figure 5-10. Validation Results for Beams 
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Figure 5-10. Validation Results for Beams (continued) 
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Figure 5-10. Validation Results for Beams (continued) 
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Figure 5-10. Validation Results for Beams (continued) 
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5.5 Monotonic Proportionally Loaded Beam-Column 
Experiments 
Proportionally loaded beam-column experiments are typically performed to determine the 
interaction of axial load and bending moment. In most cases the beam-columns are 
slender enough to experience detrimental second order effects. The eccentricity is 
introduced by loading the columns off center; the specimens studied in this section have 
the same eccentricity at both ends (Figure 5-11).  

Figure 5-11. Experimental Set of Proportionally Loaded Beam-Column Tests 

A preliminary mesh refinement study indicated some variation of the results with the 
number of elements and sections. This is in contrast to the stub column and bending 
results and is likely due to the geometric nonlinear effects and variation of strain along 
the length of the member. The results of a portion of the mesh refinement study are 
shown in Figure 5-12. The material and geometric properties for this analysis are that of 
specimen 21 from the proportionally loaded beam-column set. Results are shown for two 
elements and four elements along the length of the member. The number of integration 
points was found to have little effect on the results, these analyses have three integration 
points per element. Also shown are comparable analyses using the displacement-based 
and force-based elements available in OpenSees (2009). As can be seen, the mixed 
formulation with two elements yields a peak load near the converged value, but low post-
peak strength. With four elements along the length of the member, the results are nearly 
converged for the entire response. Both the force and displacement formulations with two 
elements overestimate the strength of the column; however, the force-based element with 
two elements provides post-peak strength nearly converged. With four elements, the 
overestimation of the peak strength is less and the post-peak strength is near converged.  
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Figure 5-12. Mesh Refinement Study for Proportionally Loaded Beam-Columns 

The analyses shown in this section were performed with four elements along the length of 
the column, with three integration points per member. Noting the two-dimensional nature 
of these tests, the fiber discretization took the form of strips, with 50 strips along the 
height of the section for each the steel and concrete. The fiber discretization was selected 
such that it was dense enough to not affect the accuracy of the results within a small 
tolerance. Analyses were run in displacement control, up to the same the peak 
deformation as experienced in the experiment.  

The material and geometric properties of each of the specimens is listed in Table 5.5. 
Experimental and computational load-deformation plots are shown in Figure 5-13. Four 
metrics were computed for comparison of the experimental and computational results. 
They are: 1) peak load, the largest load attained at any time; 2) deflection at peak load; 3) 
initial stiffness, computed as the secant stiffness between the state of zero load and the 
state of one-third of the peak load. 4) area under the curve. These metrics, with 
corresponding error computations, are listed in Table 5.6. 

The peak load and area under the curve show excellent correspondence between the 
experimental and analytical results with an average error of less than 5 percent for each. 
Opposite to that of the stub column and bending test comparisons, the initial stiffness is 
underestimated by approximately 20 percent on average in these beam-column 
comparisons. The deformation at the peak load shows good correspondence, with an 
average error of approximately 15 percent. 
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Figure 5-13. Validation Results for Proportionally Loaded Beam-Columns 
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Figure 5-13. Validation Results for Proportionally Loaded Beam-Columns (continued) 
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Figure 5-13. Validation Results for Proportionally Loaded Beam-Columns (continued) 
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Figure 5-13. Validation Results for Proportionally Loaded Beam-Columns (continued) 
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5.6 Monotonic Non-Proportionally Loaded Beam-
Column Experiments 
Non-proportional loading better represents the loading of beam-columns in moment 
resisting frames in earthquakes than proportional loading. For the case of the specimens 
examined in this section, the axial load is first applied and then a bending moment is 
applied at each end (Figure 5-14). Under this configuration, the ability of the formulation 
to model a load reversal is also tested, as some of the fibers are first in compression then 
in tension.  

Figure 5-14. Experimental Setup of Non-Proportionally Loaded Beam-Column Tests 

A preliminary mesh refinement study indicated significant variation of the results with 
the number of elements and sections. The results of a portion of the mesh refinement 
study are shown in Figure 5-15. The material and geometric properties for this analysis 
are that of specimen 12 from the proportionally loaded beam-column set. Results are 
shown for one, three, and five elements along the length of the member; the number of 
integration points for all analyses was three. The pre-peak behavior is the same for all 
three analyses. The post-peak behavior is strongly dependant on the number of elements, 
with steeper descending branches seen from denser meshes.  
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Figure 5-15. Mesh Refinement Study for Non-Proportionally Loaded Beam-Columns 
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The behavior seen in Figure 5-15 is likely due localization, a phenomenon where 
softening at the section level causes a loss of objectivity. Under the high axial loads, the 
section response does experience softening. Localization has been studied for force based 
elements (Coleman and Spacone 2001; Scott and Fenves 2006). Two general solutions 
have been proposed, the first is the alteration of the softening slope of the constitutive 
relations, and the second is to ensure that the numerical integration is performed such that 
the softening effects are distributed along the appropriate length of the member, i.e., the 
plastic hinge length. Thus, the mesh density of the analyses presented in this section was 
selected such that the length influenced by the integration points is approximately the 
same as the plastic hinge length, assumed to be approximately the diameter of the section. 
As such, the analyses were performed with one elements along the length of the column 
and three integration points. Noting the two-dimensional nature of these tests, the fiber 
discretization took the form of strips, with 50 strips along the height of the section for 
each the steel and concrete. The fiber discretization was selected such that it was dense 
enough to not affect the accuracy of the results within a small tolerance. Analyses were 
run in displacement control, up to the same the peak deformation as experienced in the 
experiment.  

The material and geometric properties of each of the specimens is listed in Table 5.7. 
Experimental and computational load-deformation plots are shown in Figure 5-16. Four 
metrics were computed for comparison of the experimental and computational results. 
They are: 1) peak moment, the largest moment attained at any time; 2) curvature at peak 
moment; 3) initial stiffness, computed as the secant stiffness between the state of zero 
moment and the state of one-third of the peak moment. 4) area under the curve. These 
metrics, with corresponding error computations, are listed in Table 5.8. 

The peak moment and area under the curve show excellent correspondence with an 
average error or less than 5 percent each. The curvature at peak moment is under 
estimated on average by approximately 40 percent while the initial stiffness is shows 
good correspondence, with an over approximation of approximately 10 percent.  
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Figure 5-16. Validation Results for Non-Proportionally Loaded Beam-Columns 
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Figure 5-16. Validation Results for Non-Proportionally Loaded Beam-Columns (cont’d) 
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Figure 5-16. Validation Results for Non-Proportionally Loaded Beam-Columns (cont’d) 
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Figure 5-16. Validation Results for Non-Proportionally Loaded Beam-Columns (cont’d) 
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5.7 Cyclic Pure Bending Experiments 
The ability of the formulation to accurately model the behavior of cyclically loaded 
specimens is examined in this section. These analyses are similar to those performed in 
for the validation of the monotonic pure bending experiments. The setup is identical to 
that of the direct moment tests of that section (Figure 5-9(a)). A similar mesh density was 
also used, namely, two elements along the length and three integration points for each 
element. Noting the two dimensional nature of these tests, the fiber discretization took the 
form of strips, with 50 strips along the height of the section for each the steel and 
concrete. Analyses were run in displacement control, following the same deformation 
pattern as experienced in the experiment.  

The material and geometric properties of each of the specimens is listed in Table 5.9. 
Experimental and computational load-deformation plots are shown in Figure 5-17. Also 
shown in Figure 5-17 are the stress-strain response obtained from the analyses for the 
extreme fibers of both the steel and concrete located at midspan of the beam.  

Table 5.9. Material and Geometric Properties of Cyclic Pure Bending Specimens 
Test 

# Author Year Specimen D    
(mm)

t      
(mm)

D/t f' c    

(MPa)
F y 

(MPa)
Bending 

Span (mm)
1 Elchalakani & Zhao 2008 F19I1 60.4 2.95 20.5 23.08 413.0 800
2 Elchalakani & Zhao 2008 F11I1 87.3 2.28 38.3 23.08 473.0 800
3 Elchalakani & Zhao 2008 F04I1 110.4 1.25 88.3 23.08 430.0 800
4 Elchalakani & Zhao 2008 F01I1 109.3 1.05 104.1 23.08 457.0 800
5 Elchalakani & Zhao 2008 F16I1 89.1 3.09 28.8 23.08 473.0 800
6 Elchalakani & Zhao 2008 F15I1-S 76.1 2.35 32.4 23.08 370.0 800
7 Elchalakani & Zhao 2008 F14I3 89.3 2.52 35.5 23.08 378.0 800
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Figure 5-17. Validation Results for Cyclic Pure Bending 
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Figure 5-17. Validation Results for Cyclic Pure Bending (continued) 
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Figure 5-17. Validation Results for Cyclic Pure Bending (continued) 
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Figure 5-17. Validation Results for Cyclic Pure Bending (continued) 
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Figure 5-17. Validation Results for Cyclic Pure Bending (continued) 
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Figure 5-17. Validation Results for Cyclic Pure Bending (continued) 
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Figure 5-17. Validation Results for Cyclic Pure Bending (continued) 
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5.8 Cyclic Slender Beam-Column Experiments 
The final verification study compares computational results to the results from a series of 
full-scale concrete-filled steel tube (CFT) beam-column tests performed at the NEES 
MAST Laboratory at the University of Minnesota (Perea 2009; Denavit et al. 2009; Leon 
et al. 2009). The test series included both RCFT and CCFT members; comparisons to the 
CCFT members are made here.  

The MAST Laboratory allows for six degrees-of-freedom (DOF) control through a rigid 
steel crosshead. For the main portion of testing, most specimens were kept in a fixed-free 
(K=2) configuration, achieved as follows. The beam-column bases are welded to a base 
plate which is bolted to the testing floor, providing a fixed connection. The beam-column 
tops are welded to a base plate with a hole for placing the concrete, which is bolted to the 
crosshead. The free condition is provided by control of the crosshead; allowing horizontal 
displacements and setting bending moments at the top to zero. Twist is constrained to 
zero due to the low torsional stiffness of the specimens.  

The loading protocol for each specimen is divided into several load cases. The first three 
load cases are the same for each of the specimens. The first load case subjects the 
specimen to concentric load. The horizontal DOFs are held at zero force, allowing the 
specimen to displace transversely. The vertical DOF is loaded under displacement control 
until a critical load is reached or until actuator load limits are reached. The second and 
third load cases subject the specimen to constant axial load (with different values being 
used between the second and third load cases) and cyclic transverse displacements, 
causing uniaxial flexure. The vertical DOF is under load control while the horizontal 
DOFs are under displacement control. The fourth and later load cases varied among the 
specimens. Some of the specimens were subjected to a biaxial cyclic loading. For this 
load case the control was similar to that of the second and third load cases except that the 
horizontal displacements were moved in a figure eight pattern (e.g., Figure 5-20(e)), 
causing biaxial flexure. Comparisons between experimental and computational results for 
these load cases are shown below. Other load cases, which are not analyzed in this work 
include:  1) Sets of “probes” of the interaction surface. While holding a constant axial 
load, the horizontal displacements are increased with a fixed ratio of X to Y displacement 
until a critical flexural strength is reached, at which point the horizontal displacements 
are reversed.  The process is then repeated for several additional X/Y displacement 
combinations. 2) Cyclic torsional loading at different levels of axial loading. 3) 
Concentric loading, uniaxial cyclic, and biaxial cyclic in a configuration having a fixed 
base and with the top fixed against rotation but free to translate (thus K = 1 with the CFT 
subjected to reverse curvature flexure).  

Four of the specimens tested (Specimens 6, 7, 11, and 15) will be presented in this work. 
The measured material and geometric properties of the specimens are listed in Table 

5.10, the initial out-of-plumbness and loading direction unit vectors are listed in  
Table 5.11, while the specific loading history of each specimen and applicable axial load 

for each load case is listed in  
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Table 5.12.  

Table 5.10. Material and Geometric Properties of the Slender Beam-Column Specimens 
D t f' c F y     L

# Name (mm) (mm) (MPa) (MPa) (mm)
6 6-CCFT12.75x0.25-18ft-12ksi 324 5.80 55.8 91.01 337.2 5499 16.98
7 7-CCFT20x0.25-18ft-12ksi 508 5.98 84.9 91.01 328.2 5534 10.89
11 11-CCFT20x0.25-26ft-5ksi 508 5.98 84.9 55.85 305.4 7995 15.74
15 15-CCFT20x0.25-26ft-12ksi 508 5.98 84.9 79.98 293.0 7976 15.70

Specimen D/t L/D

 
Table 5.11. Initial Out-of-Plumbness and Loading Direction Unit Vectors of the Slender 

Beam-Column Specimens 

Test # X (mm) Y (mm) X Y X Y
6 9.1 -6.1 -0.2978 -0.9546 0.2750 0.9615
7 -7.6 -11.9 -0.4477 -0.8942 0.4414 0.8973

11 15.0 -54.1 0.1934 -0.9811 0.2587 -0.9660
15 6.1 41.1 0.5319 0.8468 0.7071 0.7071

Initial Out-of-
Plumbness

Direction of Motion: 
Load Case 1

Direction of Motion: 
Load Case 2 & 3

 
Table 5.12. Loading Protocols of the Slender Beam-Column Specimens 

Load 
Case Description Axial Load 

(kN)
Load 
Case Description Axial Load 

(kN)

LC1 Concentric Loading n/a LC1 Concentric Loading n/a
LC2 Uniaxial Cyclic 1,334 LC2 Uniaxial Cyclic 2,669
LC3 Uniaxial Cyclic 667 LC3 Uniaxial Cyclic 1,334

LC4 Biaxial Cyclic 2,002
LC5 Biaxial Cyclic 667

LC1 Concentric Loading n/a LC1 Concentric Loading n/a
LC2 Uniaxial Cyclic 4,448 LC2 Uniaxial Cyclic 1,779
LC3 Uniaxial Cyclic 2,224 LC3 Uniaxial Cyclic 3,559
LC4 Biaxial Cyclic 5,560 LC4 Biaxial Cyclic 890

LC5 Biaxial Cyclic 2,669

Specimen 07

Specimen 06 Specimen 11

Specimen 15

The column was modeled with four elements along the length of the column, each with 
four integration points. A dense fiber discretization was used with 8 fibers in the radial 

direction for the concrete core and 2 fibers in the radial direction for the steel tube and 30 
fibers around the circumference for both materials. The out-of-plumbness of the 

specimens ( 

Table 5.11) was modeled directly by defining the initial nodal coordinates. The base was 
fully fixed against translation and rotation.  

Observations of the experimental data indicate that non-negligible friction existed in the 
crosshead. An assessment of the crosshead friction can be made with the experimental 
data at displacement reversals in second and third load cases. Upon these reversals, a very 
stiff response is seen, resulting in a jump in transverse load of approximately 8.9 kN (2 
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kips), which is likely due to friction in the loading system rather than specimen behavior. 
To account for this friction, zero length springs were added at the top of the column in the 
transverse (X and Y) directions as shown schematically in Figure 5-18. The constitutive 
model associated with the zero length springs was elastic-perfectly plastic with a yield 
force of 4.45 kN (1 kip, half of the value in transverse load observed in friction-related 
response in the experimental data). The stiffness of the elastic portion was selected such 
that the transition from positive to negative yielding occurred at a displacement less than 
the displacement step size used in the analysis, thus minimizing the influence of the 
spring on the nonlinear solution. Also, these springs were not used in the first load case. 
While friction in the crosshead is presumed to still be significant in the first load case, it 
is not modeled since the zero length springs described above, which are appropriate for 
the later load cases, lead to inappropriate results for the first load case, and a more 
accurate model is not readily attainable. For the first load case, the control of the 
specimen in the transverse directions was different as compared to the remainder of each 
experiment (i.e., for the first load case, the transverse directions were in force control 
rather than displacement control).  These forces were controlled to be zero, and thus the 
spring force provided an artificial constraint that inappropriately dominated the results. 
Other than not being present in the first load case of each specimen, the springs modeling 
crosshead friction were included throughout the loading history and for all specimens.  

Zero Length Spring 
Friction Model

Beam Elements

Figure 5-18. Schematic Representation of Friction Model 

The analysis of the first load case, consisting of concentric loading, was completed in 
displacement control, up to the displacements experienced experimentally by the 
specimen. This was in contrast to the control method used in the experiment, as described 
above.  The differences in control were necessary because of the differences in the 
capabilities and stability of the experimental loading system as compared to the 
computational model; however, comparable results were obtained. To ensure that the 
direction of motion in the analysis was the same as that of the specimen, a stiff spring 
was introduced perpendicular to the observed direction of motion. This spring was 
removed upon completion of the first load case. The later load cases, including both 
uniaxial cyclic and biaxial cyclic loading, used the same control as in the experiment:  the 
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horizontal DOFs were under displacement control while the vertical DOF was under 
force control. The two displacement histories and one loading history were defined to 
match what the specimen experienced during the test.  

For both the concentric loading and the uniaxial cyclic load cases, the motion of the 
column was such that the flexural response was uniaxial.  However, as in the experiment, 

the motion was not along one of the coordinate axes. For this reason, unit vectors were 
defined in the direction of motion for each load case ( 

Table 5.11). The displacements, forces, and moments shown in the following figures 
show the projection of the various quantities on the appropriate unit vector (a unit vector 
perpendicular to the motion for the moments). Several specimens will be presented 
individually. 

Specimen 6: The experimental and computational results for Specimen 6 are presented in 
Figure 5-19. For the first cycle of first load case, the computational model accurately 
captured the initial stiffness and peak load. The post-peak behavior and unloading 
behavior, however, do not correspond well. For the second cycle, the peak load and axial 
load-moment response correspond well, but horizontal displacement, post-peak and 
unloading do not. One possible cause of this is that for this load case, the horizontal 
DOFs were in load control set to zero force, however, due to the flexibility of the 
specimens in the horizontal direction, especially near the limit point, the accuracy of the 
control (on the order of 5 kN) likely induced significant loading on the column which 
will affect the response. The analyses, on the other hand, are capable of maintaining 
perfect control.  

In each of the uniaxial cyclic load cases, two cycles were performed at a deformation 
level large enough to show softening in the horizontal force-displacement response. At 
each reversal, a very stiff response is seen in the experimental results (Figure 5-19(c-f)). 
This is the result of friction in the loading crosshead, and the zero-length springs added to 
the model capture this behavior well. The computational model provides a good 
estimation of the peak force and moment as well as the stiffness.  
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Figure 5-19. Validation Results for Slender Beam-Column Specimen 6 



 

124 

Specimen 7: The experimental and computational results for Specimen 7 are presented in 
Figure 5-20. The axial strength of Specimen 7 was higher than that of the other 
specimens. When the first load case was performed, however, the force limits of the 
actuators were reached and significant nonlinearity was not observed. For that reason, the 
results have been excluded from this discussion. Similar to Specimen 6, the uniaxial 
cyclic load cases show good correspondence between the experimental and analytical 
results. The jumps in load due to friction in the loading crosshead are less noticeable due 
to the higher forces attained during the test. The fourth load case subjected the column to 
a biaxial displacement history. The computational model accurately predicted the stable 
response for the smaller excursions and the unstable response for the large excursions (as 
indicated by the slope of the horizontal force-displacement response). However, the 
forces from the computational model for the largest excursion are significantly low. The 
cause for this discrepancy is unclear and will be the subject of future research. Specimen 
11 tends to show better correlation during the biaxial loading (see below). The reason for 
the discrepancies could relate to friction forces or other eccentricities in the experiment 
that offset the results systematically and that are not modeled in the analysis, or to the 
computational model for cyclic concrete crushing or local buckling not addressing the 
response with sufficient accuracy.  
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Figure 5-20. Validation Results for Slender Beam-Column Specimen 7 
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Figure 5-20. Validation Results for Slender Beam-Column Specimen 7 (continued) 
 
Specimen 11 and Specimen 15: The experimental and computational results for 
Specimen 11 and Specimen 15 are presented in Figure 5-21 and Figure 5-22, 
respectively. Both Specimen 11 and Specimen 15 were subjected to two cycles of 
concentric loading, an increasing unaxial cyclic loading at two axial load levels, and 
biaxial cyclic loading at two axial load levels. Similar correspondence is observed for 
these specimens in comparison to the previous specimens. 
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Figure 5-21. Validation Results for Slender Beam-Column Specimen 11 
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Figure 5-21. Validation Results for Slender Beam-Column Specimen 11 (continued) 
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Figure 5-21. Validation Results for Slender Beam-Column Specimen 11 (continued) 
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Figure 5-22. Validation Results for Slender Beam-Column Specimen 15 
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Figure 5-22. Validation Results for Slender Beam-Column Specimen 15 (continued) 
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Figure 5-22. Validation Results for Slender Beam-Column Specimen 15 (continued) 
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5.9 Comparison to Existing Models 
As a final evaluation, comparisons are made between the current model and several 
existing computational models. The results of analyses of Specimen 11, described in the 
previous section, are the basis of comparison. The current model, with a mixed beam 
element and comprehensive cyclic constitutive models, are compared to displacement-
based and force-based beam elements using uniaxial material models based on 
constitutive relations from the literature.  

Cyclic steel and concrete constitutive models based on the work of Sakino et al. (2004) 
were used in some of the analyses presented in this section. The Concrete04 material of 
OpenSees (OpenSees 2009) was used for the concrete core, and input parameters were 
selected to match the model for the monotonic compressive response of the concrete core 
of CFT members presented by Sakino et al. (2004). However, the post-peak curve 
described by Sakino et al. (2004) is not identical to that of the Concrete04 material. For 
that reason, the strain at peak stress was increased by 5% in the Concrete04 model; this 
modification provided a good agreement between the Concrete04 model and the 
formulation presented by Sakino et al. (2004) over the range of zero strain up to ten times 
the strain at peak stress [i.e., the parameter used to describe the strain at peak stress in the 
Concrete04 material was taken as 1.05 times the strain at peak stress as described in 
Sakino et al. (2004), so that the monotonic compressive response of the Concrete04 
material mimics that of the formulation presented in Sakino et al. (2004)]. The tensile 
response of the concrete core was assumed to be zero and the cyclic response was taken 
as standard for the Concrete04 material. 

The ElasticPP material (OpenSees 2009) was used for the steel tube. Sakino et al. (2004) 
presents a model for the monotonic compressive response of the steel tube of CFT 
members. Unlike the concrete model, the monotonic compressive response of the model 
available in OpenSees is identical to that of Sakino et al. (2004). The tensile response was 
assumed to be elastic-perfectly plastic, with a yield stress equal to 1.08 times the nominal 
yield stress. This value was chosen through the use of a von Mises failure criterion 
coupled with the value of hoop stress assumed in Sakino et al. (2004). The cyclic 
response was taken as standard for the ElasticPP material. It is noteworthy that these 
models can be defined at runtime with standard OpenSees, without the need for 
development (coding) or compiling special material models or a special version of 
OpenSees. 

In Figure 5-23 the experimental results and three sets of computational results are 
presented. The computational results are labeled as follows:  

• “Analysis A”, the mixed beam element formulation presented in this work, using 
the constitutive relations presented in this work. 

• “Analysis B”, the displacement-based beam element formulation available in 
OpenSees (OpenSees 2009), using the uniaxial material models based on the 
constitutive relations of Sakino et al. (2004) described above. 
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• “Analysis C”, the force-based beam element formulation available in OpenSees 
(Scott et al. 2008; OpenSees 2009), using the uniaxial material models based on 
the constitutive relations of Sakino et al. (2004) described above. 

The analyses were identical to the previous section with the exception of the choice of 
element and uniaxial material model (i.e., the number of elements, fiber discretization, 
friction model, initial imperfections, geometric transformation, and related model 
characteristics remained the same as in the previous section and between analyses).  

The results of the analyses show that for the early load cases, all three analyses perform 
satisfactorily, with the analyses using the constitutive models by Sakino et al. (2004) 
performing slightly better. In the later load histories, a significant difference between the 
analyses arises. As the loading progresses, damage accumulates in the specimen, and the 
current model is more capable of predicting this behavior than the existing model.  
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Figure 5-23. Analysis Comparison Results 
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Figure 5-23. Analysis Comparison Results (continued) 
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Figure 5-23. Analysis Comparison Results (continued) 



 

138 

Chapter 6 

CONCLUSIONS 
A mixed finite element formulation was developed for the three-dimensional analysis of 
CCFT members and frames. The element was derived in the corotational frame utilizing 
the Total Lagrangian approach to reference forces and deformations. Material inelasticity 
is tracked with fiber cross sections located at integration points along the length of the 
element. The formulation was implemented within the OpenSees framework making 
available a wide variety of other elements, material models, and solution techniques. 

Comprehensive uniaxial cyclic constitutive relations were developed for the concrete 
core and steel tube. These models account for the salient features of each material and the 
interaction between the two, including: cracking and confinement of the concrete core 
and gradual yielding and local of the steel tube. A rule-based approach is used for the 
cyclic behavior of the concrete core while a bounding surface plasticity formulation is 
used for the cyclic behavior of the steel tube.  

The formulation was validated against a wide range of monotonic and cyclic 
experiments, including short columns, beams, and proportionally and non-proportionally 
loaded beams columns. Several elastic problems were also analyzed to validate the 
geometrically nonlinear formulation. The studies showed that accurate results can be 
obtained for CCFT members and frames subjected to a variety of loading conditions. 

The formulation is suitable for use for many future investigations into the behavior of 
CCFT members. Possible studies include: 1) Nonlinear incremental dynamic analyses of 
moment resisting and braced frames to determine appropriate seismic response factors 
(e.g., R, Cd, and Ωo). 2) Parametric studies to assess beam-column interaction strength 
and to establishing guidelines for the computation of equivalent composite beam-column 
rigidity. 3) Detailed investigation of beam-column behavior including the evolution of 
section and beam-column strength of CCFT members. 
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